Skip to main content

graphics - StreamPlot for Bifurcation Diagram


When we do a StreamPlot, I want to show the bifurcation when a=0 transitions to a>0, but do not see a better way to do this than the following.


    Animate[StreamPlot[{1,-x^4 + 5 a x^2-4 a^2}, {y,-5,5}, {x,-4,4},
PlotLabel -> Row[{"a = ", a}]], {a,-1,1}]

Is there a better way to show this bifurcation?


Maybe an animated gif like this Bifurcation diagrams for multiple equation systems) (this is a system and my example is not a system)?


Update


To be more clear, the original system is



x′(y)=−(x(y))4+5a(x(y))2−4a2



Answer



Since you have just two variables, x and a, you can make a 2D plot:


f[x_, a_] := -x^4 + 5 a x^2 - 4 a^2;

Show[StreamPlot[{f[x, a], 0}, {x, -4, 4}, {a, -1, 1}, StreamPoints -> Fine],
ContourPlot[f[x, a] == 0, {x, -4, 4}, {a, -1, 1}, ContourStyle -> ColorData[1, 2]]]

enter image description here


My explanatory comment below was incorrect, so I'm including a corrected version here. The parameter a is on the vertical axis. For a=1 we have four equilibrium points. These are visible as intersections of the red curve with the slice a=1 parallel to the horizontal axis. Note that if you have x′=fa(x)=−x4+5ax2−4a2 with a=1, then for |x|>2 you have x′<0, for 2<|x|<1 you have x′>0, and for |x|<1 you have x′<0, all of which are visible in the diagram in terms of the direction of the arrows.



Nevertheless, the version in Mark's answer is much more beautiful.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]