Skip to main content

sorting - How to get all possible orderings (equal ranks allowed) for given set of $N$ objects?


Hope there is a solution besides the tedious generation of nested loops. (Trying to avoid reinventing the wheel.)


Here is an example with $N = 3$ objects. There are $13$ needed orderings (first {} means first place, second {} means second place, ...):


1. {a}, {b}, {c}
2. {a}, {c}, {b}
3. {a}, {b, c}
4. {b}, {a}, {c}
5. {b}, {c}, {a}
6. {b}, {a, c}
7. {c}, {a}, {b}

8. {c}, {b}, {a}
9. {c}, {a, b}
10. {a, b}, {c}
11. {a, c}, {b}
12. {b, c}, {a}
13. {a, b, c}

How can I get all such orderings for a given $N$?


UPD: I also wonder how to get same orderings in binary relations notation, i.e., considering orderings as sets of ordered pairs (also neglecting here such pairs as $(a,a)$, $(b,b)$, ... since they don't make further difference). I found out that this notation is much easier way to further operating with rankings in Mathematica. Here are the above $13$ orderings in new notation:


1. {(a,b), (a,c), (b,c)}

2. {(a,c), (a,b), (c,b)}
3. {(a,b), (a,c), (b,c) (c,b)}
4. {(b,a), (b,c), (a,c)}
5. {(b,c), (b,a), (c,a)}
6. {(b,a), (b,c), (a,c), (c,a)}
7. {(c,a), (c,b), (a,b)}
8. {(c,b), (c,a), (b,a)}
9. {(c,a), (c,b), (a,b), (b,a)}
10. {(a,b), (b,a), (a,c), (b,c)}
11. {(a,c), (c,a), (a,b), (c,b)}

12. {(b,c), (c,b), (b,a), (c,a)}
13. {(a,b), (b,a), (a,c), (c,a), (b,c), (c,b)}

Answer



You can use ReplaceList with a helper function which has the Orderless attribute:


ClearAll[f]; SetAttributes[f, Orderless];

ReplaceList[f[a, b, c], f[a___, b___, c___] :> {{a}, {b}, {c}}] //
DeleteCases[#, {}, -1] & // Union // Column

enter image description here



The DeleteCases and Union are required because the output from ReplaceList includes the empty list {} as a distinct entity.


For an arbitrary input list the pattern has to be constructed with the appropriate number of arguments:


orderings[x_] := Module[{f},
SetAttributes[f, Orderless];
ReplaceList[f @@ x, With[{s = Table[Unique[], {Length@x}]},
Pattern[#, ___] & /@ f @@ s :> Evaluate[Thread[{s}]]]] //
DeleteCases[#, {}, -1] & // Union]

Style[orderings[{1, 2, 3, 4}], Small]


enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

dynamic - How can I make a clickable ArrayPlot that returns input?

I would like to create a dynamic ArrayPlot so that the rectangles, when clicked, provide the input. Can I use ArrayPlot for this? Or is there something else I should have to use? Answer ArrayPlot is much more than just a simple array like Grid : it represents a ranged 2D dataset, and its visualization can be finetuned by options like DataReversed and DataRange . These features make it quite complicated to reproduce the same layout and order with Grid . Here I offer AnnotatedArrayPlot which comes in handy when your dataset is more than just a flat 2D array. The dynamic interface allows highlighting individual cells and possibly interacting with them. AnnotatedArrayPlot works the same way as ArrayPlot and accepts the same options plus Enabled , HighlightCoordinates , HighlightStyle and HighlightElementFunction . data = {{Missing["HasSomeMoreData"], GrayLevel[ 1], {RGBColor[0, 1, 1], RGBColor[0, 0, 1], GrayLevel[1]}, RGBColor[0, 1, 0]}, {GrayLevel[0], GrayLevel...