Skip to main content

replacement - Efficient way of setting up a rule


I tried to define a simple rule defining how λ acts on ψ[n]:



myrule1 = λ ψ[n_] -> α[n + 1]  ψ[n + 1];

The result I get is correct provided there's just one λ on the RHS of ψ[n]. For instance:


λ^2  ψ[n] //. myrule1

isn't computed at all. On the other hand, if I do it step by step:


λ α[1 + n] ψ[1 + n] /. myrule1

I get the correct result. I tried to define a new rule:


myrule2 = λ^m_ ψ[n_] -> α[n + 1] λ^(m - 1) ψ[n + 1];


but it doesn't work. Since the recursive method seemed to work, I created a function which multiplies ψ[m] by λ n times:


timesλ[n_] := Nest[Times[λ, #] /. myrule1 &, ψ[m], n] &

But this is a very crude way of solving this problem.


Do you have any other ideas?



Answer



If you look at the full form versions of λ ψ[n] and λ^k ψ[n]


λ ψ[n] // FullForm



Times[λ, ψ[n]]



λ^k ψ[n] // FullForm


Times[Power[λ, k],ψ[n]]



you see that the second expression can't match your rule because it contains Power. Therefore, as Daniel Lichtblau suggests, you need to have two rules.


rules = {λ ψ[n_] -> α[1 + n] ψ[1 + n],

λ^j_ ψ[n_] -> Product[α[s], {s, n + 1, n + j}] ψ[j + n]};

Now you can get both


λ ψ[n] /. rules


α[1 + n] ψ[1 + n]



and


λ^k ψ[n] /. rules



Product[α[s], {s, n + 1, n + k}] ψ[k + n]



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...