Skip to main content

replacement - Efficient way of setting up a rule


I tried to define a simple rule defining how λ acts on ψ[n]:



myrule1 = λ ψ[n_] -> α[n + 1]  ψ[n + 1];

The result I get is correct provided there's just one λ on the RHS of ψ[n]. For instance:


λ^2  ψ[n] //. myrule1

isn't computed at all. On the other hand, if I do it step by step:


λ α[1 + n] ψ[1 + n] /. myrule1

I get the correct result. I tried to define a new rule:


myrule2 = λ^m_ ψ[n_] -> α[n + 1] λ^(m - 1) ψ[n + 1];


but it doesn't work. Since the recursive method seemed to work, I created a function which multiplies ψ[m] by λ n times:


timesλ[n_] := Nest[Times[λ, #] /. myrule1 &, ψ[m], n] &

But this is a very crude way of solving this problem.


Do you have any other ideas?



Answer



If you look at the full form versions of λ ψ[n] and λ^k ψ[n]


λ ψ[n] // FullForm



Times[λ, ψ[n]]



λ^k ψ[n] // FullForm


Times[Power[λ, k],ψ[n]]



you see that the second expression can't match your rule because it contains Power. Therefore, as Daniel Lichtblau suggests, you need to have two rules.


rules = {λ ψ[n_] -> α[1 + n] ψ[1 + n],

λ^j_ ψ[n_] -> Product[α[s], {s, n + 1, n + j}] ψ[j + n]};

Now you can get both


λ ψ[n] /. rules


α[1 + n] ψ[1 + n]



and


λ^k ψ[n] /. rules



Product[α[s], {s, n + 1, n + k}] ψ[k + n]



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]