Skip to main content

Possible Bug in ProbitModelFit when used in a Dataset


Since upgrading to Mathematica 10 on Mac OSX I have come across a number of instances of this error, which occurs using Probit and Logit model fit.


enter image description here



A bit of googling show this is something to do with the estimation algorithm.


But the issue is more complex. When I estimate the model straight from this dataset I get the error, but when I first take the values of the data, then fit the model, I get the expected result.


Here's an example


var = {age, gender, photo6};

mTest = SemanticImport[
"https://dl.dropboxusercontent.com/u/3997716/test.csv"];

testFit =
mTest[ProbitModelFit[#, var,

var] &, {#age, #gender, #photo6, #rawM} &]

testFit2 =
ProbitModelFit[#, var,
var] &@(mTest[All, {"age", "gender", "photo6", "rawM"}] //
Normal // Values)

Output of this is


enter image description here


Why the two different results for the same calculation? Is there a workaround that allows the estimation to proceed when directly using the dataset?




Answer



I believe that this is a bug. The rest of this response speculates as to the possible cause.


We start by observing that the test can be made to work by suppressing MissingBehaviour:


mTest[
ProbitModelFit[#, var, var] &
, {#age, #gender, #photo6, #rawM} &
, MissingBehavior -> None
]

result screenshot



It also works if FailureAction -> None is specified instead, but then the exhibited error message about non-real values is produced (along with the correct result).


As noted elsewhere MissingBehavior is implemented by Dataset`WithOverrides. ??Dataset`WithOverrides reveals that this function temporarily alters the definitions of a number of symbols, namely those in this list:


Dataset`Overrides`PackagePrivate`$AllChangedSymbols

(* { Commonest,First,InterquartileRange,Kurtosis,Last,Mean,Median,Missing,Most,
Quartiles,Rest,RootMeanSquare,Skewness,StandardDeviation,Total,Variance }
*)

It so happens that ProbitModelFit uses Total. We can verify that fact like this:


$data = mTest[All, {#age, #gender, #photo6, #rawM} &];


On @@ Dataset`Overrides`PackagePrivate`$AllChangedSymbols

ProbitModelFit[$data // Normal, {age, gender, photo6}, {age, gender, photo6}]

Off[]

(* ... produces many trace messages containing Total ... *)

It would appear that the patching performed by Dataset`WithOverrides is interfering with the operation of ProbitModelFit. We can simulate this by engaging in some patching of our own:



Internal`InheritedBlock[{Total}
, Unprotect @ Total
; Total[n___] /; False := Null
; ProbitModelFit[$data // Normal,{age,gender,photo6},{age,gender,photo6}]
]

result screenshot


This patch is even less invasive than the one installed by Dataset`WithOverrides, and yet it generates the same error message (and the same correct output). It would seem that ProbitModelFit is expecting Total to operate exactly as it is shipped -- nothing more, nothing less.


Conclusion


ProbitModelFit does not function properly within a query with default missing- and failure-handling. The missing-handling alters the definition of Total in a manner that causes ProbitModelFit to issue a warning message. The failure-handling sees that message and, by default, fails the whole query operation. Correct operation can be restored by either disabling the missing-handling, the failure-handling, or both.



The missing-handling is implemented by monkey-patching various low-level system components. This patching implements the proper Query semantics, at the cost of disturbing normal non-query system behaviour. Such disturbances are a frequent consequence of monkey-patching. The patching methodology explains not only the issue under discussion, but a number of other erratic Dataset behaviours logged on this site.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...