Skip to main content

calculus and analysis - Center of mass of 2D region


The problem states:
Find the center of mass of a thin plate covering the region between the​ x-axis and the curve $$y=20/x^2, 5 \leq x \leq8$$ if the​ plate's density at a point​ (x,y) is $\delta(x)=2x^2$.
If the density were uniform I would find the center of mass using RegionCentroid:
In[1]:= reg = ImplicitRegion[{5 <= x <= 8, 0 <= y <= 20/x^2}, {x, y}]; RegionCentroid[reg] Out[1]= {40/3 Log[8/5], 43/160}
Is there an "easy" way like this to compute the center of mass when the density function is given? I'm trying to avoid setting up integrals manually.
It seems to me that what I need is Geometric Centroid. "http://mathworld.wolfram.com/GeometricCentroid.html" says:




The centroid is center of mass of a two-dimensional planar lamina or a three-dimensional solid. The mass of a lamina with surface density function $\sigma(x,y)$..."*. "The geometric centroid of a region can be computed in the Wolfram Language using Centroid[reg].



However it doesn't work for me. Does this function still exist in Mathematica 11 or do I need to use Needs?



Answer



Since it is a thin plate and so essentially 2D, you can use the density as the third dimension.


reg = ImplicitRegion[{5 <= x <= 8, 0 <= y <= 20/x^2, 0 <= z <= 2 x^2}, {x, y, z}];
RegionCentroid[reg]//Most

out = {13/2, 1/4}

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],