Skip to main content

calculus and analysis - Center of mass of 2D region


The problem states:
Find the center of mass of a thin plate covering the region between the​ x-axis and the curve $$y=20/x^2, 5 \leq x \leq8$$ if the​ plate's density at a point​ (x,y) is $\delta(x)=2x^2$.
If the density were uniform I would find the center of mass using RegionCentroid:
In[1]:= reg = ImplicitRegion[{5 <= x <= 8, 0 <= y <= 20/x^2}, {x, y}]; RegionCentroid[reg] Out[1]= {40/3 Log[8/5], 43/160}
Is there an "easy" way like this to compute the center of mass when the density function is given? I'm trying to avoid setting up integrals manually.
It seems to me that what I need is Geometric Centroid. "http://mathworld.wolfram.com/GeometricCentroid.html" says:




The centroid is center of mass of a two-dimensional planar lamina or a three-dimensional solid. The mass of a lamina with surface density function $\sigma(x,y)$..."*. "The geometric centroid of a region can be computed in the Wolfram Language using Centroid[reg].



However it doesn't work for me. Does this function still exist in Mathematica 11 or do I need to use Needs?



Answer



Since it is a thin plate and so essentially 2D, you can use the density as the third dimension.


reg = ImplicitRegion[{5 <= x <= 8, 0 <= y <= 20/x^2, 0 <= z <= 2 x^2}, {x, y, z}];
RegionCentroid[reg]//Most

out = {13/2, 1/4}

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...