Skip to main content

differential equations - Spurious DSolve Solution


Bug introduced in 8.0.4 or earlier, persisting through 12.0.


DSolve quickly returns solutions to the following PDE (which is the homogeneous portion of the PDE in question 130755).


s = Flatten@DSolve[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2] == 0, 
l[w1, w2], {w1, w2}]
(* {l[w1, w2] -> E^(-(ArcTan[w1/Sqrt[w2^2]]/a)) C[1][1/2 (w1^2 + w2^2)],
l[w1, w2] -> E^(ArcTan[w1/Sqrt[w2^2]]/a) C[1][1/2 (w1^2 + w2^2)]} *)


However, an attempt to verify this result indicates that one of the two solutions is spurious.


FullSimplify[Unevaluated[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2]] /. #] &
/@ s
(* {-((E^(-(ArcTan[w1/Sqrt[w2^2]]/a)) (w2 + Sqrt[w2^2]) C[1][1/2 (w1^2 + w2^2)])/w2),
(E^(ArcTan[w1/Sqrt[w2^2]]/a) (-w2 + Sqrt[w2^2]) C[1][1/2 (w1^2 + w2^2)])/w2} *)

The first term fails to vanish for w2 > 0, and the second term for w2 < 0. Executing SetOptions[Solve, Method -> Reduce] prior to DSolve in the hope of obtaining conditional answers produces the same result. Also, using the DSolve Assumptions option does not help. For instance,


sp = Flatten@DSolve[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2] == 0, 
l[w1, w2], {w1, w2}, Assumptions -> w2 > 0]

(* {l[w1, w2] -> E^(-(ArcTan[w1/w2]/a)) C[1][1/2 (w1^2 + w2^2)],
l[w1, w2] -> E^(ArcTan[w1/w2]/a) C[1][1/2 (w1^2 + w2^2)]} *)

FullSimplify[Unevaluated[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2]] /. #] &
/@ sp
(* {-2 E^(-(ArcTan[w1/w2]/a)) C[1][1/2 (w1^2 + w2^2)], 0} *)

Once again, one solution is spurious. In fact, the correct solution is


l[w1, w2] -> E^(-(ArcTan[w1, w2]/a)) C[1][1/2 (w1^2 + w2^2)]];
FullSimplify[Unevaluated[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2]] /. %

(* 0 *)

My questions are, (1) is this a bug (as it appears to be)?, and (2) does a work-around exist (apart from changing independent variables to obtain an ODE instead)?


Addendum


As commented by xzczd, this problem also occurs in question 130596.




Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],