Skip to main content

differential equations - Spurious DSolve Solution


Bug introduced in 8.0.4 or earlier, persisting through 12.0.


DSolve quickly returns solutions to the following PDE (which is the homogeneous portion of the PDE in question 130755).


s = Flatten@DSolve[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2] == 0, 
l[w1, w2], {w1, w2}]
(* {l[w1, w2] -> E^(-(ArcTan[w1/Sqrt[w2^2]]/a)) C[1][1/2 (w1^2 + w2^2)],
l[w1, w2] -> E^(ArcTan[w1/Sqrt[w2^2]]/a) C[1][1/2 (w1^2 + w2^2)]} *)


However, an attempt to verify this result indicates that one of the two solutions is spurious.


FullSimplify[Unevaluated[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2]] /. #] &
/@ s
(* {-((E^(-(ArcTan[w1/Sqrt[w2^2]]/a)) (w2 + Sqrt[w2^2]) C[1][1/2 (w1^2 + w2^2)])/w2),
(E^(ArcTan[w1/Sqrt[w2^2]]/a) (-w2 + Sqrt[w2^2]) C[1][1/2 (w1^2 + w2^2)])/w2} *)

The first term fails to vanish for w2 > 0, and the second term for w2 < 0. Executing SetOptions[Solve, Method -> Reduce] prior to DSolve in the hope of obtaining conditional answers produces the same result. Also, using the DSolve Assumptions option does not help. For instance,


sp = Flatten@DSolve[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2] == 0, 
l[w1, w2], {w1, w2}, Assumptions -> w2 > 0]

(* {l[w1, w2] -> E^(-(ArcTan[w1/w2]/a)) C[1][1/2 (w1^2 + w2^2)],
l[w1, w2] -> E^(ArcTan[w1/w2]/a) C[1][1/2 (w1^2 + w2^2)]} *)

FullSimplify[Unevaluated[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2]] /. #] &
/@ sp
(* {-2 E^(-(ArcTan[w1/w2]/a)) C[1][1/2 (w1^2 + w2^2)], 0} *)

Once again, one solution is spurious. In fact, the correct solution is


l[w1, w2] -> E^(-(ArcTan[w1, w2]/a)) C[1][1/2 (w1^2 + w2^2)]];
FullSimplify[Unevaluated[D[l[w1, w2], w1] a w2 - D[l[w1, w2], w2] a w1 - l[w1, w2]] /. %

(* 0 *)

My questions are, (1) is this a bug (as it appears to be)?, and (2) does a work-around exist (apart from changing independent variables to obtain an ODE instead)?


Addendum


As commented by xzczd, this problem also occurs in question 130596.




Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...