Skip to main content

plotting - Building a nine - region cluster chart but, getting inaccurate plot-legend when empty subregions are present



This is a follow up question to the one submitted at the following: Stack exchange Link


I quickly get to the subject:


mockdataWithNAICS = {{"29-1141", 186, 112}, {"41-2031", 123, 92}, {"41-1011", 65, 404}, {"43-4051", 108, 646}, {"31-1014", 643, 246},
{"49-9071", 356, 363}, {"43-1011", 543, 381}, {"43-5081", 268, 674}, {"53-3032", 416, 653}, {"37-3011", 514, 428}, {"37-2012", 501, 58},
{"33-9032", 441, 598}, {"35-2014", 633, 138}, {"29-2061", 414, 590}, {"53-3033", 98, 155}, {"35-3031", 179, 431}, {"49-3023", 93, 623},
{"35-3021", 37, 578}, {"41-2011", 256, 237}, {"37-2011", 302, 50}, {"47-1011", 518, 2}, {"11-9111", 313, 294}, {"31-9092", 698, 136},
{"43-3031", 608, 610}, {"43-6013", 562, 515}, {"13-2011", 415, 327}, {"21-1093", 191, 72}, {"41-4012", 212, 92}, {"41-3031", 546, 418},
{"31-1011", 591, 49}, {"47-2031", 405, 526}, {"41-3021", 191, 297}, {"15-1151", 442, 445}, {"43-6011", 118, 185}, {"49-1011", 472, 402},
{"53-7062", 348, 552}, {"43-4171", 409, 396}, {"43-6014", 348, 247}, {"53-1031", 629, 59}, {"47-2061", 589, 534}, {"27-1026", 22, 377},
{"29-1069", 445, 74}, {"49-9021", 647, 539}, {"43-9061", 25, 543}, {"11-1021", 19, 165}, {"41-1012", 482, 199}, {"29-1062", 1, 68},

{"43-4081", 217, 112}, {"41-3099", 663, 66}, {"11-3031", 329, 392}, {"53-7061", 357, 515}, {"35-2021", 488, 245}, {"31-9091", 318, 679},
{"51-1011", 650, 349}, {"11-9051", 38, 145}, {"53-3031", 166, 691}, {"39-9021", 561, 127}, {"39-5012", 665, 362}, {"47-2111", 397, 532},
{"43-3071", 326, 271}, {"29-2034", 361, 450}, {"35-9011", 12, 366}, {"29-1123", 16, 211}, {"15-1142",162, 662}, {"11-2021", 520, 164},
{"29-2031", 339, 619}, {"25-2011", 263, 564}, {"41-4011", 551, 301}, {"29-2055", 76, 549}, {"29-2052", 285, 640}, {"13-2072", 370, 542},
{"35-2012", 512, 547}, {"11-2022", 130, 154}, {"15-1132", 188, 274}, {"13-2052", 338, 587}, {"15-1199", 455, 5}, {"35-9031", 595, 472},
{"17-2051", 648, 481}, {"11-9199", 430, 189}, {"39-3091", 29, 396}, {"47-2152", 412, 342}, {"29-1122", 582, 20}, {"11-9141", 276, 4},
{"25-2021", 666, 617}, {"15-1134", 236, 334}, {"37-1011", 407, 664}, {"29-1063", 260, 278}, {"49-3031", 161, 354}, {"41-9022", 185, 144},
{"41-9041", 551, 628}, {"25-2031", 529, 505}, {"29-2071", 548, 296}, {"29-1127", 373, 124}, {"21-1023", 473, 71}, {"29-1067", 489, 569},
{"29-1071", 539, 277}, {"11-3121", 390, 348}, {"11-9021", 634, 20}, {"53-3041", 589, 258}, {"49-3021", 47, 206}};


Following MelaGo at the above Stack Exchange link:


minx = Round[Min[mockdataWithNAICS[[All, 2]]]];
maxx = Round[Max[mockdataWithNAICS[[All, 2]]]];
dx = Round[Subdivide[minx, maxx, 3]];

miny = Round[Min[mockdataWithNAICS[[All, 3]]]];
maxy = Round[Max[mockdataWithNAICS[[All, 3]]]];
dy = Round[Subdivide[miny, maxy, 3]];

gridpts = Tuples[{dx, dy}];


regions = {Rectangle[gridpts[[1]], gridpts[[6]]],
Rectangle[gridpts[[5]], gridpts[[10]]],
Rectangle[gridpts[[9]], gridpts[[14]]],
Rectangle[gridpts[[2]], gridpts[[7]]],
Rectangle[gridpts[[6]], gridpts[[11]]],
Rectangle[gridpts[[10]], gridpts[[15]]],
Rectangle[gridpts[[3]], gridpts[[8]]],
Rectangle[gridpts[[7]], gridpts[[12]]],
Rectangle[gridpts[[11]], gridpts[[16]]]};


pts = Cases[
Table[Select[mockdataWithNAICS, #[[{2, 3}]] \[Element] r &], {r,
regions}], Except[{}]];

colors = {Magenta, Orange, Cyan, Red, Blue, Green, LightGray, Yellow,
Black};

plt1 = ListPlot[Table[Tooltip[#[[{2, 3}]], #[[1]]] & /@ p, {p, pts}],
Frame -> True, PlotStyle -> colors, GridLines -> {dx, dy},

PlotRange -> {{minx, maxx}, {miny, maxy}}, AspectRatio -> 1]

colornames = {"Magenta", "Orange", "Cyan", "Red", "Blue", "Green",
"Gray", "Yellow", "Black"};

regionlabels = {"Low Ads - Low Openings", "Medium Ads - Low Openings",
"High Ads - Low Openings", "Low Ads - Medium Openings",
"Medium Ads - Medium Openings", "High Ads - Medium Openings",
"Low Ads - High Openings", "Medium Ads - High Openings",
"High Ads - High Openings"};


table[pairs_] :=
TableForm[pairs,
TableHeadings -> {colornames, {"Colors:", "Cluster Region:"}},
TableAlignments -> Center]

SwatchLegend[colors, regionlabels, LegendLayout -> table]

plt2 = ListPlot[Table[Tooltip[#[[{2, 3}]], #[[1]]] & /@ p, {p, pts}],
Frame -> True, PlotStyle -> colors, GridLines -> {dx, dy},

PlotRange -> {{minx, maxx}, {miny, maxy}}, AspectRatio -> 1,
FrameLabel -> {"Job Ads", "Job Openings"},
LabelStyle -> Directive[Black, 16, Bold], ImageSize -> 600,
PlotLabel ->
Style[Framed["Macondo Region"], 16, Black, Bold,
Background -> Lighter[Yellow]],
PlotLegends ->
SwatchLegend[colors, regionlabels, LegendLayout -> table,
LegendMarkers -> {"Bubble", 10}]]


The above plt2 works fine because all the cluster regions involved contain at least one point by design.


Next, I delete:


(1.) the Orange points in the [Medium Ads - Low Openings] region;


(2.) the Red points in the [Low Ads - Medium Openings] region; and


(3.) the Gray points in the [Low Ads - High Openings] region


to show you the problem that I' m experiencing.


MockdataWithEmptyRegions = {{"29-1141", 186, 112}, {"41-2031", 123, 92},
{"53-3033", 98, 155}, {"21-1093", 191, 72}, {"41-4012", 212, 92},
{"43-6011", 118, 185}, {"11-1021", 19, 165}, {"29-1062", 1, 68},
{"43-4081", 217, 112}, {"11-9051", 38, 145}, {"29-1123", 16, 211},

{"11-2022", 130, 154}, {"41-9022", 185, 144}, {"49-3021", 47, 206},
{"37-2012", 501, 58}, {"35-2014", 633, 138}, {"47-1011", 518, 2},
{"31-9092", 698, 136}, {"31-1011", 591, 49}, {"53-1031", 629, 59},
{"41-1012", 482, 199}, {"41-3099", 663, 66}, {"39-9021", 561, 127},
{"11-2021", 520, 164}, {"29-1122", 582, 20}, {"21-1023", 473, 71},
{"11-9021", 634, 20}, {"49-9071", 356, 363}, {"41-2011", 256, 237},
{"11-9111", 313, 294}, {"13-2011", 415, 327}, {"15-1151", 442, 445},
{"43-4171", 409, 396}, {"53-7062", 348, 552}, {"11-3031", 329, 392},
{"43-3071", 326, 271}, {"29-2034", 361, 450}, {"47-2152", 412, 342},
{"15-1134", 236, 334}, {"29-1063", 260, 278}, {"11-3121", 390, 348},

{"31-1014", 643, 246}, {"43-1011", 543, 381}, {"37-3011", 514, 428},
{"41-3031", 546, 418}, {"49-1011", 472, 402}, {"35-2021", 488, 245},
{"51-1011", 650, 349}, {"39-5012", 665, 362}, {"41-4011", 551, 301},
{"29-2071", 548, 296}, {"29-1071", 539, 277}, {"53-3041", 589, 258},
{"43-5081", 268, 674}, {"53-3032", 416, 653}, {"33-9032", 441, 598},
{"29-2061", 414, 590}, {"47-2031", 405, 526}, {"53-7062", 348, 552},
{"53-7061", 357, 515}, {"31-9091", 318, 679}, {"47-2111", 397, 532},
{"29-2031", 339, 619}, {"25-2011", 263, 564}, {"29-2052", 285, 640},
{"13-2072", 370, 542}, {"13-2052", 338, 587}, {"37-1011", 407, 664},
{"43-3031", 608, 610}, {"43-6013", 562, 515}, {"47-2061", 589, 534},

{"49-9021", 647, 539}, {"35-2012", 512, 547}, {"35-9031", 595, 472},
{"17-2051", 648, 481}, {"25-2021", 666, 617}, {"41-9041", 551, 628},
{"25-2031", 529, 505}, {"29-1067", 489, 569}};


pts2 = Cases[
Table[Select[
MockdataWithEmptyRegions, #[[{2, 3}]] \[Element] r &], {r,
regions}], Except[{}]];


plt3 = ListPlot[Table[Tooltip[#[[{2, 3}]], #[[1]]] & /@ p, {p, pts2}],
Frame -> True, PlotStyle -> colors, GridLines -> {dx, dy},
PlotRange -> {{minx, maxx}, {miny, maxy}}, AspectRatio -> 1,
FrameLabel -> {"Job Ads", "Job Openings"},
LabelStyle -> Directive[Black, 16, Bold], ImageSize -> 600,
PlotLabel ->
Style[Framed["Macondo Region"], 16, Black, Bold,
Background -> Lighter[Yellow]],
PlotLegends ->
SwatchLegend[colors, regionlabels, LegendLayout -> table,

LegendMarkers -> {"Bubble", 10}]]

If you compare plt2 with plt3 you will see that the points in the [Medium Ads - Low Openings], [Low Ads - Medium Openings] and [Low Ads - High Openings] regions are gone in plt3 but, the color scheme has changed!


For instance, what used to be yellow points in plt2 are now blue points in plt3. This negates the legend in plt2 which says that the blue points should be in the [Medium Ads - Medium Opening] region.


I have two questions:


(1.) How can I fix the color scheme so that it will not change for data sets that might contain empty regions?


(2.) How can I give the same point size to all the points, in all the regions?


Thank you!



Answer



For (1) Instead of removing empty sub-lists, change your function for adding tooltips so that empty sub-lists replaced with an invisible point:



pts = Table[Select[mockdataWithNAICS, #[[{2,3}]] ∈ r &], {r, regions}] /. {}->{{}};

pts2 = Table[Select[MockdataWithEmptyRegions, #[[{2,3}]] ∈ r &], {r, regions}] /. {}->{{}};

addTooltips = Table[If[# === {}, Style[{0, 0}, Opacity[0]],
Tooltip[#[[{2, 3}]], #[[1]]]] & /@ p, {p, #}] &;

and for (2) add the option BaseStyle -> PointSize[Large].


ListPlot[addTooltips @ pts, Frame -> True, PlotStyle -> colors, 
GridLines -> {dx, dy}, Axes -> False,

PlotRange -> {{minx, maxx}, {miny, maxy}}, AspectRatio -> 1,
FrameLabel -> {"Job Ads", "Job Openings"},
LabelStyle -> Directive[Black, 16, Bold], ImageSize -> 500,
BaseStyle -> PointSize[Large],
PlotLabel -> Style[Framed["Macondo Region"], 16, Black, Bold,
Background -> Lighter[Yellow]],
PlotLegends -> SwatchLegend[colors, regionlabels, LegendLayout -> table,
LegendMarkers -> "Bubble"]]

enter image description here



Use addTooltips @ pts2 in the first argument to get


enter image description here


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...