Skip to main content

programming - How to implement FittedModel like objects


In the course of making some RLink wrappers I want to have some richer containers like Mathematica does with its FittedModel code. I thought I had a good idea of how this might be done, i.e make a custom Format specification that hides some arguments and use DownValues to give different parts of the code.


In looking at actual FittedModel objects this does not seem to be what is being done, as it has no DownValues. Also when you look at the FullForm it doesn't seem to have enough data to give back all the "Properties" available.



My question is, is their documentation for making rich data objects like Mathematica is commonly doing these days?




I do really want to understand how to use DownValues/SubValues to actually implement the type of behavior something like FittedModel has. ... Is there a way to make it clear that this is not covered by the linked to question (which just deals with the Format/Boxes issue)?



Answer



After some work and clarification from Leonid it becomes clear this is a case where SubValues is the exact solution. As this answer points out SubValues are patterns of the form


food[d][f] := a;

which is the correct form for accessing parts of an "data-like" object since the sub value has access to the containing expression parts.


Now to build on a similar answer we have to small extension of instead of just using accessor functions, we can actually build SubValues so that we can do this on the symbol itself like Mathematica data objects do. From the previous answer we have:


makeMyData[d1_, d2_] := MyData[d1, d2]

Format[MyData[d1_, d2_]] := "MyData[<" <> ToString[Length[d1] + Length[d2]] <> ">]"

Now we just add some SubValues to MyData


MyData[d1_, d2_]["D1"] := d1
MyData[d1_, d2_]["D2"] := d2
MyData[d1_, d2_]["Properties"] := {"D1", "D2"}

and then we get the expected behavior as follows


dat = makeMyData[Range[1, 10], b]
dat["D1"] (* returns {1, ..., 10} *)

dat["D2"] (* returns b *)
dat["Properties"] (* returns {"D1", "D2"} *)

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...