Skip to main content

graphics - How can I sequentially apply different graph embeddings?


Imagine I have some graph G, and I perform a graph embedding using a command like:


G = Graph[GraphEdges, GraphLayout -> {"SpringElectricalEmbedding"}]

I then want to apply a "GridEmbedding" to the post-Spring/Electrical embedded graph.


How can I do this?


Specifically, I have a graph I know to be a rectangular lattice, but the vertices are at random positions initially. Attempting a direct "GridEmbedding" yields junk; however the "SpringElectricalEmbedding" almost works, but begins to fail around the edges of the graph. Does anyone have advice for dealing with this?


Alternatively, can "GridEmbedding" be made to respect edge lengths / weights akin to what is possible for "SpringElectricalEmbedding"?




Answer



Here's the one way:


g = Graph[RandomSample[EdgeList[GridGraph[{10, 12}]], 218], 
GraphLayout -> {"GridEmbedding", "Dimension" -> {10, 12}}]

enter image description here


Apply SpringElectricalEmbedding to see how it work:


SetProperty[g, GraphLayout -> "SpringElectricalEmbedding"]

enter image description here



Since you know your graph is rectangular, you can pick four corners by checking vertex degree.


In[356]:= corners = VertexList[g, x_ /; VertexDegree[g, x] == 2]
Out[356]= {111, 120, 10, 1}

Get possible tuples of corners:


In[357]:= tuples = Subsets[corners, {2}]
Out[357]= {{111, 120}, {111, 10}, {111, 1}, {120, 10}, {120, 1}, {10, 1}}

Generate shortest path function for further computation:


shortpath = FindShortestPath[g];


By checking lengths of paths between corners, you could find two boundary paths:


In[359]:= bound = shortpath @@@ tuples;
{m, n} = Most[Sort[Union[Length /@ bound]]];
paths = Select[bound, Length[#] == m &]
Out[361]= {{111, 112, 113, 114, 115, 116, 117, 118, 119, 120}, {10, 9,
8, 7, 6, 5, 4, 3, 2, 1}}

Compute grids of vertex indices:


pairs = If[Length[shortpath[paths[[1, 1]], paths[[2, 1]]]] == n,

Transpose[paths], paths[[1]] = Reverse[paths[[1]]];
Transpose[paths]];
grids = (VertexIndex[g, #] & /@ shortpath[##]) & @@@ pairs;

Compute coordinates using "SpringElectricalEmbedding":


coords = GraphEmbedding[g, "SpringElectricalEmbedding"];

Now straighten coords by the mean of each grid lines:


Table[coords[[i, 2]] = Mean[coords[[i, 2]]];, {i, grids}];
Table[

coords[[i, 1]] = Mean[coords[[i, 1]]];, {i, Transpose[grids]}];

Here's the results:


SetProperty[g, VertexCoordinates -> coords]

enter image description here


You could make function to do all steps:


gridCoordinates[g_] :=
Block[{coords, corners, tuples, shortpath, bound, m, n, paths, pairs,
grids},

coords = GraphEmbedding[g, "SpringElectricalEmbedding"];
corners = VertexList[g, x_ /; VertexDegree[g, x] == 2];
tuples = Subsets[corners, {2}];
shortpath = FindShortestPath[g];
bound = shortpath @@@ tuples;
{m, n} = Most[Sort[Union[Length /@ bound]]];
paths = Select[bound, Length[#] == m &];
pairs = If[Length[shortpath[paths[[1, 1]], paths[[2, 1]]]] == n,
Transpose[paths], paths[[1]] = Reverse[paths[[1]]];
Transpose[paths]];

grids = (VertexIndex[g, #] & /@ shortpath[##]) & @@@ pairs;
Table[coords[[i, 2]] = Mean[coords[[i, 2]]];, {i, grids}];
Table[coords[[i, 1]] = Mean[coords[[i, 1]]];, {i, Transpose[grids]}];
coords
]

Here's the version that generate coordinate on unit grid:


  gridUnitCoordinates[g_] :=
Block[{coords, corners, tuples, shortpath, bound, m, n, paths, pairs,
grids},

corners = VertexList[g, x_ /; VertexDegree[g, x] == 2];
tuples = Subsets[corners, {2}];
shortpath = FindShortestPath[g];
bound = shortpath @@@ tuples;
{m, n} = Most[Sort[Union[Length /@ bound]]];
paths = Select[bound, Length[#] == m &];
pairs = If[Length[shortpath[paths[[1, 1]], paths[[2, 1]]]] == n,
Transpose[paths], paths[[1]] = Reverse[paths[[1]]];
Transpose[paths]];
grids = (VertexIndex[g, #] & /@ shortpath[##]) & @@@ pairs;

{m, n} = Dimensions[grids];
coords = Flatten[Table[{j, i}, {i, m}, {j, n}], 1];
coords[[Ordering[Flatten[grids]]]]
]

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...