Skip to main content

graphics - How can I sequentially apply different graph embeddings?


Imagine I have some graph G, and I perform a graph embedding using a command like:


G = Graph[GraphEdges, GraphLayout -> {"SpringElectricalEmbedding"}]

I then want to apply a "GridEmbedding" to the post-Spring/Electrical embedded graph.


How can I do this?


Specifically, I have a graph I know to be a rectangular lattice, but the vertices are at random positions initially. Attempting a direct "GridEmbedding" yields junk; however the "SpringElectricalEmbedding" almost works, but begins to fail around the edges of the graph. Does anyone have advice for dealing with this?


Alternatively, can "GridEmbedding" be made to respect edge lengths / weights akin to what is possible for "SpringElectricalEmbedding"?




Answer



Here's the one way:


g = Graph[RandomSample[EdgeList[GridGraph[{10, 12}]], 218], 
GraphLayout -> {"GridEmbedding", "Dimension" -> {10, 12}}]

enter image description here


Apply SpringElectricalEmbedding to see how it work:


SetProperty[g, GraphLayout -> "SpringElectricalEmbedding"]

enter image description here



Since you know your graph is rectangular, you can pick four corners by checking vertex degree.


In[356]:= corners = VertexList[g, x_ /; VertexDegree[g, x] == 2]
Out[356]= {111, 120, 10, 1}

Get possible tuples of corners:


In[357]:= tuples = Subsets[corners, {2}]
Out[357]= {{111, 120}, {111, 10}, {111, 1}, {120, 10}, {120, 1}, {10, 1}}

Generate shortest path function for further computation:


shortpath = FindShortestPath[g];


By checking lengths of paths between corners, you could find two boundary paths:


In[359]:= bound = shortpath @@@ tuples;
{m, n} = Most[Sort[Union[Length /@ bound]]];
paths = Select[bound, Length[#] == m &]
Out[361]= {{111, 112, 113, 114, 115, 116, 117, 118, 119, 120}, {10, 9,
8, 7, 6, 5, 4, 3, 2, 1}}

Compute grids of vertex indices:


pairs = If[Length[shortpath[paths[[1, 1]], paths[[2, 1]]]] == n,

Transpose[paths], paths[[1]] = Reverse[paths[[1]]];
Transpose[paths]];
grids = (VertexIndex[g, #] & /@ shortpath[##]) & @@@ pairs;

Compute coordinates using "SpringElectricalEmbedding":


coords = GraphEmbedding[g, "SpringElectricalEmbedding"];

Now straighten coords by the mean of each grid lines:


Table[coords[[i, 2]] = Mean[coords[[i, 2]]];, {i, grids}];
Table[

coords[[i, 1]] = Mean[coords[[i, 1]]];, {i, Transpose[grids]}];

Here's the results:


SetProperty[g, VertexCoordinates -> coords]

enter image description here


You could make function to do all steps:


gridCoordinates[g_] :=
Block[{coords, corners, tuples, shortpath, bound, m, n, paths, pairs,
grids},

coords = GraphEmbedding[g, "SpringElectricalEmbedding"];
corners = VertexList[g, x_ /; VertexDegree[g, x] == 2];
tuples = Subsets[corners, {2}];
shortpath = FindShortestPath[g];
bound = shortpath @@@ tuples;
{m, n} = Most[Sort[Union[Length /@ bound]]];
paths = Select[bound, Length[#] == m &];
pairs = If[Length[shortpath[paths[[1, 1]], paths[[2, 1]]]] == n,
Transpose[paths], paths[[1]] = Reverse[paths[[1]]];
Transpose[paths]];

grids = (VertexIndex[g, #] & /@ shortpath[##]) & @@@ pairs;
Table[coords[[i, 2]] = Mean[coords[[i, 2]]];, {i, grids}];
Table[coords[[i, 1]] = Mean[coords[[i, 1]]];, {i, Transpose[grids]}];
coords
]

Here's the version that generate coordinate on unit grid:


  gridUnitCoordinates[g_] :=
Block[{coords, corners, tuples, shortpath, bound, m, n, paths, pairs,
grids},

corners = VertexList[g, x_ /; VertexDegree[g, x] == 2];
tuples = Subsets[corners, {2}];
shortpath = FindShortestPath[g];
bound = shortpath @@@ tuples;
{m, n} = Most[Sort[Union[Length /@ bound]]];
paths = Select[bound, Length[#] == m &];
pairs = If[Length[shortpath[paths[[1, 1]], paths[[2, 1]]]] == n,
Transpose[paths], paths[[1]] = Reverse[paths[[1]]];
Transpose[paths]];
grids = (VertexIndex[g, #] & /@ shortpath[##]) & @@@ pairs;

{m, n} = Dimensions[grids];
coords = Flatten[Table[{j, i}, {i, m}, {j, n}], 1];
coords[[Ordering[Flatten[grids]]]]
]

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...