Skip to main content

matrix - How to accelerate combinations and sum calculations here?


I have a 4d matrix H defined as below (embedded with combinations and sums)


screenshot



H[n1_, n2_, n3_, n4_] := 
(1/(4*Sqrt[n1*(n1 + 1)*n2*(n2 + 1)*n3*(n3 + 1)*n4*(n4 + 1)]))*
Sum[(-1)^(m1 + m2 + m3 + m4)*Binomial[n1 + 1, m1 + 2]*Binomial[n2 + 1, m2 + 2]*Binomial[n3 + 1, m3 + 2]*Binomial[n4 + 1, m4 + 2]*
Binomial[m1 + m3, m1]*Binomial[m2 + m4, m2]*(m1 + m3 + 1)*(m2 + m4 + 1)*
(((m1 + m3 + 2)/2^(m1 + m3))*Sum[Binomial[m1 + m3 + k + 2, k]/2^k, {k, 0, m2 + m4 + 1}] +
((m2 + m4 + 2)/2^(m2 + m4))*Sum[Binomial[m2 + m4 + l + 2, l]/2^l, {l, 0, m1 + m3 + 1}]), {m1, 0, n1 - 1}, {m2, 0, n2 - 1}, {m3, 0, n3 - 1},
{m4, 0, n4 - 1}]

Here n1, n2, n3, n4 are indices that range from 1 to N.


When N = 6, it takes my Mac (2.7 GHz Intel Core i5) about 30s to figure out the whole 4d matrix. However, it takes 1.5hrs for N=11. The time scaling is highly nonlinear..



The problem is that when N is big (N>20), it takes forever to run. Anyone has some good suggestion to accelerate the calculation? Thanks.


UPDATE: Actually I do not need all the matrix entries, please see here:


Delete rows and columns in a matrix based on the element index


After getting and 4d matrix H and reshaping it into a 2d matrix, I will delete according to the rule:


If i>j OR k>l, then delete this element.


So it seems redundant to figure all the entries out in the first place?



Answer



You could introduce further conditional definitions for H which will prevent those computations whose results would end up being thrown away.


For instance, you could add:


H[i_, j_, k_, l_] /; (i > j || k > l) = Missing[];


As a toy example:


m = Table[H[n, 2, 3, 4], {n, 1, 10}]
(* Out: {(3 Sqrt[5])/128, (5 Sqrt[15])/256, Missing[], Missing[], Missing[]} *)

DeleteMissing[m]
(* Out: {(3 Sqrt[5])/128, (5 Sqrt[15])/256} *)

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],