Skip to main content

formatting - How does MakeBoxes handle an n-ary operator?


I want to format results from Reduce using the $\cup$ symbol instead of the $\lor$ symbol. For example, Reduce[x^2 > 4, x, Reals] produces $x<-2\lor x>2$ while I would like it to produce $x<-2\cup x>2$.


My current solution is to add the head xO to use in place of the Or head and associate the appropriate formatting with the xO head using MakeBoxes.


xO /: MakeBoxes[xO[x_, y_], form_] :=                                                             
RowBox[{MakeBoxes[x, form], "\[Union]", MakeBoxes[y, form]}];


When I want to invoke the special formatting, I simply substitute xO for Or.


Reduce[x^2 > 4, x, Reals] /. Or -> xO

This produces the desired result of $(x<-2)\cup (x>2)$. I am feeling like a master bit-twiddler at this point.


Of course, my next test case didn't work.


Reduce[x^3 + 2 x^2 - x - 2 == 0] /. Or -> xO
(* xO(x==-2,x==-1,x==1) *)

My MakeBoxes[xO[x_, y_]] definition above does not match the case when xO has three arguments. I added the following to limp along a little further.



xO /: MakeBoxes[xO[x_, y_, z_], form_] :=                                                         
RowBox[{MakeBoxes[x, form], "\[Union]", MakeBoxes[y, form], "\[Union]", MakeBoxes[z, form]}];

This works for three arguments, but is clearly not a robust solution. What is the general method for an n-ary function?


I tried several variations of the following:


xO /: MakeBoxes[xO[x_, y__], form_] :=                                                            
RowBox[{MakeBoxes[x, form], "\[Union]", MakeBoxes[y, form]}];

which produced the error:


MakeBoxes::argt: "MakeBoxes called with 3 arguments; 1 or 2 arguments are expected"


when applied to the Reduce[x^3 + 2 x^2 - x - 2 == 0] /. Or -> xO test case.


I am probably missing something obvious. Any ideas?



Answer



You were almost there. You just need to use the multiple-argument pattern, and generalize your code accordingly to create the internals of RowBox programmatically:


xO /: MakeBoxes[xO[x___], form_] :=
RowBox[
Riffle[
Map[MakeBoxes[#, form] &, {x}],
"\[Union]"

]
]

Note however that the above implementation leaks evaluation. It may or may not be a problem, but for example here:


x = 1;
xO[x == 1, x > 1, x < 1]

one may argue that the desired result should not be sensitive to the possible global values that x may have, so the result:


(* True \[Union] False \[Union] False *)


may be unsatisfacory. Thus, here is a more careful version:


ClearAll[xO];
SetAttributes[xO, HoldAllComplete];
xO /: MakeBoxes[xO[x___], form_] :=
RowBox@Riffle[
List @@ Replace[
HoldComplete[x],
elem_ :> With[{eval = MakeBoxes[elem, form]}, eval /; True],
{1}
],

"\[Union]"
]

which now gives


xO[x == 1, x > 1, x < 1]

(* x == 1 \[Union] x > 1 \[Union] x < 1 *)

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...