Skip to main content

programming - Can individual locators in LocatorPane be temporarily disabled?


This follows up on another question about the sensitivity of Locators in a a LocatorPane.


I would like to be able to enable/disable individual locators in a LocatorPane. In the simplified version of the applet, pictured below, I would like to be able to disable the locators that set the slope of the red line, while allowing the locators that set the slope of the blue line to remain enabled.


locators



Using individual Locators, rather than a LocatorPane, is not an option. (There are some subtle issues that arise with individual locators. Essentially, multiple Locators can behave in a "flaky" fashion in complex applets, in ways that LocatorPane does not.)


Code below:


Manipulate[m = 15;
LocatorPane[Dynamic[pts],
Dynamic[ Module[{x = pts[[1, 1]], y = pts[[2, 2]], x2 = pts[[3, 1]], y2 = pts[[4, 2]]},
Graphics[{
{Blue, Line[{-m*{x2, y2}, m*{x2, y2}}]},
Line[{{x2, 0}, {x2, y2}}], Line[{{x2, y2}, {0, y2}}],
{Red, Line[{-m*{x, y}, m*{x, y}}]},
Line[{{x, 0}, {x, y}}], Line[{{x, y}, {0, y}}]},

PlotRange -> m, Axes -> True, ImageSize -> {300, 300}]]],
{{{-m, 0}, {m, 0}, {1, 0}},
{{0, -m}, {0, m}, {0, 1}},
{{-m, 0}, {m, 0}, {1, 0}},
{{0, -m}, {0, m}, {0, 1}}},
Appearance -> {Automatic, Automatic, Automatic, Automatic}],
{{pts, {{6, 0}, {0, 9}, {3, 0}, {0, 7}}}, ControlType -> None}]

The visibility of the locators can be individually controlled by toggling the respective locator's Appearance between None and Automatic. But even when the locator is invisible (i.e. Appearance -> None) it continues enabled. For example, the red sliders will continue to set the slope of the red line.


A possible solution would be to obtain the Appearance setting of the red sliders and make the assignment of x and y contingent on the Appearance setting.




Answer



A simple way to do this is to change the Dynamic so that it updates only the points you want to be editable. Here is a very simple demonstration


 pts = {{6, 0}, {0, 9}, {3, 0}, {0, 7}};
updatable = Range@Length@pts;
Button["Fixate point 3", (updatable = {1, 2, 4})]
LocatorPane[Dynamic[pts, (pts[[updatable]] = #[[updatable]]) &],
Dynamic@Graphics[Point /@ pts, PlotRange -> {{-10, 10}, {-10, 10}}]]

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...