Skip to main content

simplifying expressions - Eliminate a variable from a differential equation and an algebra equation then collect the remaining variables


Recently, I am attempting to eliminate a variable from a differential equation (DE) and an algebra equation (AE), then collect the remaining variables as a new (grand) parameter. Actually, I have worked on this problem more than one week. Due to my incompetence, today I seek someone's help on this forum. To show this idea, this is a working example:


Implement the following code step by step:


eq1 = h'[t] == Log[(1 - xi)/(1 - x0)];
eq2 = h[t] == (xw - xi)/(-(1 - xw)*Log[(1 - xi)/(1 - x0)]);
Eliminate[{eq1, eq2}, xi] // FullSimplify

Then I get a DE



E^Derivative[1][h][ t] + ((-1 + xw) (-1 + h[t] Derivative[1][h][t]))/(-1 + x0) == 0




Next, I want to replace the remaining variables $\frac{1-x0}{1-xw}$ by a new parameter $c$, in other word, the desired DE is $e^{h'[t]}-\frac{1}{c}(1-h[t]h'[t])=0$, which is a preferred form for parameter study. So I tried


%/. (1 - x0)/(1 - xw) -> c

unfortunately, this replacement does not work, which follows my first question: how to replace a combination of variable by a parameter. This question appears to be silly, someone may say that why not replace it manually? The reason is in some more complicated equation a number of parameters are often distributed, so it is not easy to combine them manually. You have gotten my point:)


This is my full problem:


First, parameter $\Xi$ consists of known parameters


Ξ = (EE*((1 + B KK) Sqrt[M] Log[(1 - x0)/(1 - xw)] - 
B Δ Subscript[Θ, ∞])^2)/(\
Δ^2*(Γ*(1 - xw)*(Log[(1 - x0)/(1 - xw)] -

Δ/Sqrt[M]*B*Subscript[Θ, ∞]) -
KK*B*Subscript[Θ, ∞]));

Second, function $g_1$ and $g_2$ contain unknown variable $xi$


g1 = ((Δ*Γ*(xi - xw) + KK*Sqrt[M]*
Log[(1 - x0)/(1 - xi)])*(Subscript[Θ, ∞] -
\Γ*(xi - xw)))/((Subscript[Θ, ∞] -
\Γ*(xi - xw))*Δ*B -
Sqrt[M]*(1 + KK*B)*Log[(1 - x0)/(1 - xi)]);


g2 = ((Δ*Γ*(xi - xw) +
KK*Sqrt[M]*Log[(1 - x0)/(1 - xi)])*(1 + KK*B))/(Δ*
B*(Subscript[Θ, ∞] -
Γ*(xi - xw)) - (1 + KK*B)*Sqrt[M]*Log[(1 - x0)/(1 - xi)]);

Third, DE and AE for $H[T]$:


eq1 = H'[T] == 1/Ξ*(EE*(Γ*(xi-xw)-B*g1))/(KK + g2);

eq2 = H[T] == (Δ*Γ*(xi - xw) +
KK*Sqrt[M]*Log[(1 - x0)/(1 - xi)])/(Δ*

B*(Subscript[Θ, ∞] -
Γ*(xi-xw)) -Sqrt[M]*(1 + KK*B)*Log[(1 - x0)/(1 - xi)]);

Fourth, eliminate $xi$:


Eliminate[{eq1, eq2}, xi]

Note from which my second question arises: how to speed up the long-time running of Mathematica?


Finally, the last question is how to combine those parameter(known) in the above resulting differential equation into the following two new (grand) parameters:


Σ = ((Δ*Γ*Sqrt[M]*(1 - xw) -
KK*M*(1 + B KK) )*Log[(1 - x0)/(1 - xw)]^2)/((1 + B KK) Sqrt[M]*

Log[(1 - x0)/(1 - xw)] -
B Δ Subscript[Θ, ∞])^2;

and


Π = (Δ^2*B*
Subscript[Θ, ∞]*Γ*(1 - xw)*
Log[(1 - x0)/(1 - xw)])/((1 + B KK) Sqrt[M] Log[(1 - x0)/(1 - xw)] -
B Δ Subscript[Θ, ∞])^2;

Some Hints: the final DE might contain the following terms $H[T]$, $H'[T]$, $\Sigma$, $\Pi$, and the exponential function.



I am so sorry for the complicated expressions. And many thanks for your time!




Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...