Skip to main content

matrix - Sparse Cholesky Decomposition


I am working with square matrices with a special form, which for large rank ($> 100,000$) would be best stored and manipulated as a SparseArray. I believe that the Cholesky decomposition of these matrices itself could also be sparse. The question I have is



How do I compute the sparse Cholesky decomposition of a sparse matrix without resorting to dense storage of the intermediates and result?



For purposes of illustration:



n = 5;
s = SparseArray[{{i_, i_} -> 2., {i_, j_} /; Abs[i - j] == 1-> -1.}, {n, n}];
s // MatrixForm

s


The CholeskyDecomposition function returns a dense matrix:


CholeskyDecomposition[s] // MatrixForm

Cholesky triangle


The CholeskyDecomposition documentation gives a lead: "Using LinearSolve will give a LinearSolveFunction that has a sparse Cholesky factorization".



ls = LinearSolve[s,"Method" -> "Cholesky"];
ls // InputForm

However, I'm stuck with what to do with this object to bring it in for the win.



Answer



LinearSolve[] actually computes a permuted Cholesky decomposition; that is, it performs the decomposition $\mathbf P^\top\mathbf A\mathbf P=\mathbf G^\top\mathbf G$. To extract $\mathbf P$ and $\mathbf G$, we need to use some undocumented properties. Here's a demo:


mat = SparseArray[{Band[{2, 1}] -> -1., Band[{1, 1}] -> 2.,
Band[{1, 2}] -> -1.}, {5, 5}];

ls = LinearSolve[mat, Method -> "Cholesky"];

g = ls["getU"]; (* upper triangular factor *)
perm = ls["getPermutations"][[1]]; (* permutation vector *)
p = SparseArray[MapIndexed[Append[#2, #1] -> 1 &, perm]]; (* permutation matrix *)

p.Transpose[g].g.Transpose[p] == mat (* check! *)
True



Here's a classical example of why permutation matrices are a must in sparse Cholesky decompositions.


Consider the following upper arrowhead matrix:



arr = SparseArray[{{1, j_} | {j_, 1} /; j != 1 -> -1., Band[{1, 1}] -> 3.}, {5, 5}];

ArrayPlot[arr]

upper arrowhead


Watch what happens after performing a Cholesky decomposition:


ArrayPlot[CholeskyDecomposition[arr]]

Cholesky triangle of upper arrowhead


Boom, fill-in. Imagine if this had been a $100\,000\times 100\,000$ upper arrowhead matrix!



If, however, we permute arr to a lower arrowhead matrix, like so:


exc = Reverse[IdentityMatrix[5]];
la = exc.arr.Transpose[exc];

ArrayPlot[CholeskyDecomposition[la]]

Cholesky triangle of lower arrowhead


What a difference a permutation makes!


For matrices with even more complicated sparsity patterns, it is doubtful if you can predict in advance that you won't get any disastrous fill-in if you insist on an unpermuted Cholesky triangle. Thus, all standard sparse Cholesky routines always perform some sort of permutation; though, as with any automatic routine of this sort, the permutation chosen might not be the most optimal, and yet yield something still good enough to work.


For reference, here's how LinearSolve[] does on an upper arrowhead:



lsar = LinearSolve[arr, Method -> "Cholesky"];
g = lsar["getU"];
ArrayPlot[g]

Cholesky triangle from LinearSolve


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...