Skip to main content

dataset - DeleteMissing level spec confusion


Given:


titanic = ExampleData[{"Dataset", "Titanic"}]

Why does this correctly delete Missing[] elements:


 titanic[GroupBy@Key@"class", DeleteMissing[#, 1] &, "age"] // Normal

but not the default level spec? Seems to violate key transparency in Associations/Datasets.


 titanic[GroupBy@Key@"class", DeleteMissing, "age"] // Normal


(* <|"1st" -> {29, 1, 2, 30, 25, 48, 63, 39, 53, 71, 47, 18, 24, 26, 80,
Missing[], 24, 50, 32,... |> *)

DeleteMissing also works on the bare list, as would any function applied at that Dataset slot. On the other hand:


<| "key" -> {29, 1, 2, 30, 25, 48, 63, 39, 53, 71, 47, 18, 24, 26, 80, 
Missing[], 24, ... |> // DeleteMissing[#, 2] &

Level 2 is the minimum needed to delete missing element?



Answer



UPDATE The described behaviour is not a bug as DeleteMissing is explicitly listed as a descending operator in the documentation. See the response by @TaliesinBeynon.



I will delete this response after the "accept" has been transferred.




Original Response - WARNING: The following analysis is incorrect.


This is yet another manifestation of the WRI-confirmed bug encountered here and here.


Correct compilation, with DeleteMissing applied at the right time and level:


Dataset`CompileQuery @ Query[GroupBy@Key@"class", DeleteMissing[#,1]&, "age"]

(* Dataset`WithOverrides@*GeneralUtilities`Checked[
GroupBy[Key[class]] /*
Map[Map[GeneralUtilities`Slice[age]] /* (DeleteMissing[#1,1]&)]

, Identity
] *)

Incorrect compilation, with DeleteMissing applied too early:


Dataset`CompileQuery @ Query[GroupBy@Key@"class", DeleteMissing, "age"]

(* Dataset`WithOverrides@*GeneralUtilities`Checked[
GroupBy[Key[class]] /*
Map[DeleteMissing /* Map[GeneralUtilities`Slice[age]]]
, Identity

] *)

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...