Skip to main content

dataset - DeleteMissing level spec confusion


Given:


titanic = ExampleData[{"Dataset", "Titanic"}]

Why does this correctly delete Missing[] elements:


 titanic[GroupBy@Key@"class", DeleteMissing[#, 1] &, "age"] // Normal

but not the default level spec? Seems to violate key transparency in Associations/Datasets.


 titanic[GroupBy@Key@"class", DeleteMissing, "age"] // Normal


(* <|"1st" -> {29, 1, 2, 30, 25, 48, 63, 39, 53, 71, 47, 18, 24, 26, 80,
Missing[], 24, 50, 32,... |> *)

DeleteMissing also works on the bare list, as would any function applied at that Dataset slot. On the other hand:


<| "key" -> {29, 1, 2, 30, 25, 48, 63, 39, 53, 71, 47, 18, 24, 26, 80, 
Missing[], 24, ... |> // DeleteMissing[#, 2] &

Level 2 is the minimum needed to delete missing element?



Answer



UPDATE The described behaviour is not a bug as DeleteMissing is explicitly listed as a descending operator in the documentation. See the response by @TaliesinBeynon.



I will delete this response after the "accept" has been transferred.




Original Response - WARNING: The following analysis is incorrect.


This is yet another manifestation of the WRI-confirmed bug encountered here and here.


Correct compilation, with DeleteMissing applied at the right time and level:


Dataset`CompileQuery @ Query[GroupBy@Key@"class", DeleteMissing[#,1]&, "age"]

(* Dataset`WithOverrides@*GeneralUtilities`Checked[
GroupBy[Key[class]] /*
Map[Map[GeneralUtilities`Slice[age]] /* (DeleteMissing[#1,1]&)]

, Identity
] *)

Incorrect compilation, with DeleteMissing applied too early:


Dataset`CompileQuery @ Query[GroupBy@Key@"class", DeleteMissing, "age"]

(* Dataset`WithOverrides@*GeneralUtilities`Checked[
GroupBy[Key[class]] /*
Map[DeleteMissing /* Map[GeneralUtilities`Slice[age]]]
, Identity

] *)

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...