Skip to main content

table - issue with Animate


I want to make a animation based on the dataset like


data = Flatten[Table[{x, y, x^2 - y^2}, {x, -3, 3}, {y, -3, 3}], 1];

I show this data using a ListPlot3D.


p2[θ_] := RotationTransform[θ, {0, 0, 1}]

When I use Table to generate the different images, it works fine.


test11 = Table[
ListPlot3D[p2[a][data] /. {x_, y_, z_} -> {x, y, z*a}, Mesh -> 5,

MeshStyle -> White, Axes -> {False, False, True},
PlotRange -> {{-4, 4}, {-4, 4}, {-10, 10}}], {a, -1, 1, 0.1}]

Export["anigraf2.GIF", test11, "DisplayDurations" -> 1]

When I use 'Animate' to create the same output, Mathematica stops responding en I have to restart the software.


Animate[ListPlot3D[p2[a][data] /. {x_, y_, z_} -> {x, y, z*a}, 
Mesh -> 5, MeshStyle -> White, Axes -> False,
PlotRange -> {{-4, 4}, {-4, 4}, {-10, 10}}], {a, -1, 1, 0.1},
AnimationDirection -> ForwardBackward, AnimationRunning -> True,

SaveDefinitions -> True]

Is there somebody who has suggestion for this issue?



Answer



For anything but the simplest of graphics objects, always avoid Animate and use ListAnimate instead.


The difference is that ListAnimate works on a pre-defined list of images to create an animation. All the rendering is done beforehand. With Animate, it attempts to do the rendering on the fly, when you are moving the slider.


So this will make the animation you are looking for,


data = Flatten[Table[{x, y, x^2 - y^2}, {x, -3, 3}, {y, -3, 3}], 1];
p2[θ_] := RotationTransform[θ, {0, 0, 1}];
imglist = Table[

ListPlot3D[p2[a][data] /. {x_, y_, z_} -> {x, y, z*a}, Mesh -> 5,
MeshStyle -> White, Axes -> {False, False, True},
PlotRange -> {{-4, 4}, {-4, 4}, {-10, 10}}]
, {a, -1, 1, 0.1}];
ListAnimate[
imglist,
AnimationDirection -> ForwardBackward, AnimationRunning -> True,
SaveDefinitions -> True]

Another option is to use Manipulate instead of Animate. Manipulate will render the 3D graphics using fewer points when you are moving the slider, giving you the changes quickly when it can at the expense of quality, and then generating the higher quality images when the slider stops moving. (Correct me if I am wrong here) I do not think that Animate does this.



So this runs relatively quickly on my machine,


Manipulate[
ListPlot3D[p2[a][data] /. {x_, y_, z_} -> {x, y, z*a}, Mesh -> 5,
MeshStyle -> White, Axes -> {False, False, True},
PlotRange -> {{-4, 4}, {-4, 4}, {-10, 10}}]
, {a, -1, 1, 0.05}]

enter image description here


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...