Skip to main content

list manipulation - Convert frequency counts to long notation in Mathematica


I have a series of frequencies of values, e.g. 5 times 1, 10 times 2 and 5 times 3, as in


list={{1,5},{2,10},{3,5}}


and I would like to convert this to long notation as in


list2={1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3}

what is the most elegant way to do this in Mathematica?



Answer



I added timings - 3rd from the bottom is fastest. I am sure there are faster versions. If speed is important you can parallelize or come up with a Compile-ed solution.


In[1]:= list = RandomInteger[{3, 12}, {10^7, 2}];

In[2]:= list // Developer`PackedArrayQ

Out[2]= True

In[3]:= Table[#1, {#2}] & @@@ list // Flatten; // AbsoluteTiming
Out[3]= {22.015290, Null}

In[4]:= Join @@ (Table[#1, {#2}] & @@@ list); // AbsoluteTiming
Out[4]= {18.528328, Null}

In[13]:= Join @@ ConstantArray @@@ list; // AbsoluteTiming
Out[13]= {18.261945, Null}


In[5]:= ConstantArray[#1, #2] & @@@ list // Flatten; // AbsoluteTiming
Out[5]= {43.177745, Null}

In[6]:= NestList[# &, #1, #2 - 1] & @@@ list // Flatten; // AbsoluteTiming
Out[6]= {30.278883, Null}

In[7]:= Join @@MapThread[ConstantArray, Thread[list]]; // AbsoluteTiming
Out[7]= {15.465663, Null}


In[8]:= Flatten@ MapThread[ConstantArray, Thread[list]]; // AbsoluteTiming
Out[8]= {40.184748, Null}

In[9]:= Join @@ MapThread[Table[#1, {#2}] &, Thread[list]]; // AbsoluteTiming
Out[9]= {18.716637, Null}

In[3]:= Inner[ConstantArray, Sequence @@ Transpose@list, Join]; // AbsoluteTiming
Out[3]= {16.525300, Null}

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...