Skip to main content

equation solving - NSolve finds real-valued results in version 9, but not in version 10



UPDATE Reals also was used in the code.


Actually, I tried the following simple piece of code.


P[T_, V_] := -(1/V^2) + T/V + (2 T)/(-1 + V)^3 + (4 T)/(-1 + V)^2;
NSolve[
{
D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0
},
{T, V},
Reals

] // TableForm

And in ver. 9, the output was,


{
{T -> -9.67712, V -> -2.35529},
{T -> -5.12191, V -> -0.778707},
{T -> 0.0943287, V -> 7.66613}
}

and in case of ver. 10.3.1, obtained,



{}

That is, these two versions apparently return different outputs.


Whats is the cause? Is there any version dependency in Mathematica?



Answer



Not a solution, more of an extended comment.


Clearly there are real solutions, the curves below do cross


ContourPlot[
Evaluate[{D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0}], {V, -10, 10}, {T, -10, 10},

PlotPoints -> 40]

enter image description here


You can get the real-valued solutions version 9 gave via


Solve[{N@D[P[T, V], {V, 1}] == 0, 
N@D[P[T, V], {V, 2}] == 0}, {T, V}, Reals]


During evaluation of Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. >>




(* {{T -> -9.67712, V -> -2.35529}, {T -> -5.12191, 
V -> -0.778707}, {T -> 0.0943287, V -> 7.66613}} *)

You can also get these answers with NSolve (with a little more precision) by using the Method option


NSolve[
{
D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0
},
{T, V}

, Reals, Method -> "UseSlicingHyperplanes"]
(* {{T -> 0.0943287, V -> 7.66613}, {T -> -9.67712,
V -> -2.35529}, {T -> -5.12191, V -> -0.778707}} *)

{D[P[T, V], {V, 1}] , D[P[T, V], {V, 2}]} /. %
(* {{-1.12757*10^-17,
3.25261*10^-18}, {1.11022*10^-15, -1.9984*10^-15}, {3.55271*10^-15,
1.59872*10^-14}} *)

Why is this happening? I don't know (hence the disclaimer at the top). I know that the functions NSolve and the like are constantly undergoing development, and some of those very developers post here. They would be very interested in hearing about this I think.



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...