Skip to main content

equation solving - NSolve finds real-valued results in version 9, but not in version 10



UPDATE Reals also was used in the code.


Actually, I tried the following simple piece of code.


P[T_, V_] := -(1/V^2) + T/V + (2 T)/(-1 + V)^3 + (4 T)/(-1 + V)^2;
NSolve[
{
D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0
},
{T, V},
Reals

] // TableForm

And in ver. 9, the output was,


{
{T -> -9.67712, V -> -2.35529},
{T -> -5.12191, V -> -0.778707},
{T -> 0.0943287, V -> 7.66613}
}

and in case of ver. 10.3.1, obtained,



{}

That is, these two versions apparently return different outputs.


Whats is the cause? Is there any version dependency in Mathematica?



Answer



Not a solution, more of an extended comment.


Clearly there are real solutions, the curves below do cross


ContourPlot[
Evaluate[{D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0}], {V, -10, 10}, {T, -10, 10},

PlotPoints -> 40]

enter image description here


You can get the real-valued solutions version 9 gave via


Solve[{N@D[P[T, V], {V, 1}] == 0, 
N@D[P[T, V], {V, 2}] == 0}, {T, V}, Reals]


During evaluation of Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. >>




(* {{T -> -9.67712, V -> -2.35529}, {T -> -5.12191, 
V -> -0.778707}, {T -> 0.0943287, V -> 7.66613}} *)

You can also get these answers with NSolve (with a little more precision) by using the Method option


NSolve[
{
D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0
},
{T, V}

, Reals, Method -> "UseSlicingHyperplanes"]
(* {{T -> 0.0943287, V -> 7.66613}, {T -> -9.67712,
V -> -2.35529}, {T -> -5.12191, V -> -0.778707}} *)

{D[P[T, V], {V, 1}] , D[P[T, V], {V, 2}]} /. %
(* {{-1.12757*10^-17,
3.25261*10^-18}, {1.11022*10^-15, -1.9984*10^-15}, {3.55271*10^-15,
1.59872*10^-14}} *)

Why is this happening? I don't know (hence the disclaimer at the top). I know that the functions NSolve and the like are constantly undergoing development, and some of those very developers post here. They would be very interested in hearing about this I think.



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...