Skip to main content

equation solving - NSolve finds real-valued results in version 9, but not in version 10



UPDATE Reals also was used in the code.


Actually, I tried the following simple piece of code.


P[T_, V_] := -(1/V^2) + T/V + (2 T)/(-1 + V)^3 + (4 T)/(-1 + V)^2;
NSolve[
{
D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0
},
{T, V},
Reals

] // TableForm

And in ver. 9, the output was,


{
{T -> -9.67712, V -> -2.35529},
{T -> -5.12191, V -> -0.778707},
{T -> 0.0943287, V -> 7.66613}
}

and in case of ver. 10.3.1, obtained,



{}

That is, these two versions apparently return different outputs.


Whats is the cause? Is there any version dependency in Mathematica?



Answer



Not a solution, more of an extended comment.


Clearly there are real solutions, the curves below do cross


ContourPlot[
Evaluate[{D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0}], {V, -10, 10}, {T, -10, 10},

PlotPoints -> 40]

enter image description here


You can get the real-valued solutions version 9 gave via


Solve[{N@D[P[T, V], {V, 1}] == 0, 
N@D[P[T, V], {V, 2}] == 0}, {T, V}, Reals]


During evaluation of Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. >>




(* {{T -> -9.67712, V -> -2.35529}, {T -> -5.12191, 
V -> -0.778707}, {T -> 0.0943287, V -> 7.66613}} *)

You can also get these answers with NSolve (with a little more precision) by using the Method option


NSolve[
{
D[P[T, V], {V, 1}] == 0,
D[P[T, V], {V, 2}] == 0
},
{T, V}

, Reals, Method -> "UseSlicingHyperplanes"]
(* {{T -> 0.0943287, V -> 7.66613}, {T -> -9.67712,
V -> -2.35529}, {T -> -5.12191, V -> -0.778707}} *)

{D[P[T, V], {V, 1}] , D[P[T, V], {V, 2}]} /. %
(* {{-1.12757*10^-17,
3.25261*10^-18}, {1.11022*10^-15, -1.9984*10^-15}, {3.55271*10^-15,
1.59872*10^-14}} *)

Why is this happening? I don't know (hence the disclaimer at the top). I know that the functions NSolve and the like are constantly undergoing development, and some of those very developers post here. They would be very interested in hearing about this I think.



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

How to remap graph properties?

Graph objects support both custom properties, which do not have special meanings, and standard properties, which may be used by some functions. When importing from formats such as GraphML, we usually get a result with custom properties. What is the simplest way to remap one property to another, e.g. to remap a custom property to a standard one so it can be used with various functions? Example: Let's get Zachary's karate club network with edge weights and vertex names from here: http://nexus.igraph.org/api/dataset_info?id=1&format=html g = Import[ "http://nexus.igraph.org/api/dataset?id=1&format=GraphML", {"ZIP", "karate.GraphML"}] I can remap "name" to VertexLabels and "weights" to EdgeWeight like this: sp[prop_][g_] := SetProperty[g, prop] g2 = g // sp[EdgeWeight -> (PropertyValue[{g, #}, "weight"] & /@ EdgeList[g])] // sp[VertexLabels -> (# -> PropertyValue[{g, #}, "name"]...