Skip to main content

combinatorics - Cyclic and Non-cyclic Permutations


Mathematica has a built in function to generate all permutations of a given list of elements; Permutations


I can't find an equivalent function to generate cyclic permutations only in the documentation. Here is my function that achieves this goal:


CyclicPermutations[list_] := 
RotateRight[list, #] & /@ (Range[Length[list]] - 1)

Is there an in-built function somewhere that I've not been able to find?



And then a similar question which I don't have my own answer to. I would like to also generate all noncyclic permutations, ie. the set of permutations minus the set of cyclic permutations. I'm not sure of a good way to do this, I can think up some methods which use Permutations and my CyclicPermutations and then maybe DeleteCases, but I think this will be comparatively very inefficient. Does anyone else have a better method?



Answer



Per the request, I post my comment as an answer:



cy := Permute[#, CyclicGroup[Length@#]] &
cy[Range@5]


{{1, 2, 3, 4, 5}, {2, 3, 4, 5, 1}, {3, 4, 5, 1, 2}, {4, 5, 1, 2,
3}, {5, 1, 2, 3, 4}}





We can use the Complement mentioned by J.M. in his comment. I suppose that the order is $5$; then, you can use the following method to get noncyclic permutations:


Complement[Permutations[Range[5]], cy[Range@5]]


{{1,2,3,5,4},{1,2,4,3,5},{1,2,4,5,3},{1,2,5,3,4},{1,2,5,4,3},{1,3,2,4,5},{1,3,2,5,4},<<101>>,{5,3,4,2,1},{5,4,1,2,3},{5,4,1,3,2},{5,4,2,1,3},{5,4,2,3,1},{5,4,3,1,2},{5,4,3,2,1}}



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...