Skip to main content

plotting - RevolutionPlot3D: but NOT revolving about the z axis


I want to demonstrate generating a solid of revolution by revolving a planar region about, say, a horizontal axis. However, RevolutionPlot3D doesn't seem to have an option for revolving a curve about something other than the $z$ axis. I'm curious how you all would handle this.


Here's a simple example:


theta0 = Pi;
Manipulate[

GraphicsRow[{
Plot[x^2, {x, 0, 1}, PlotStyle -> {Thick, Black}, Filling -> Axis],
Rotate[RevolutionPlot3D[Sqrt[x], {x, 0, 1}, {t, theta0 - .001, T},
PlotRange -> {{-1, 1}, {-1, 1}, {0, 1}}, BoxRatios -> 1,
Boxed -> False, Axes -> False, ViewPoint -> {0, -2, 1}], -Pi/2]
}],
{T, theta0, theta0 + 2 Pi}]

enter image description here


My questions:





  1. Is there a "better" way to showcase revolving about a horizontal axis of revolution than what I've done with Rotate?




  2. Is it possible to generate the higher quality, finished surface of revolution while the slider bar is moving instead of only when the slider is released?




  3. How do I prevent the vertical tick labels on the far left edge as well as the graphic on the far right edge from being clipped? (I tried Spacings and ImagePadding.)





  4. How do I vertically align the horizontal axis of revolution of the right graphic with the horizontal axis of the left graphic?




Edit: I had a follow up question but I will spin that off as a separate question.



Answer



Answers:



  1. RevolutionAxis, set to either "X" or {1,0,0}. (This also required adjustments to the PlotRange and ViewPoint options.)

  2. PerformanceGoal -> "Quality"


  3. I switched from GraphicsRow to Row, which I like much better. (I then also set ImageSize -> Small to make the plots a bit bigger than they'd naturally be in Row.)

  4. I was able to align the plots pretty well by setting BaselinePosition for each of the plots.


I also turned off the Mesh since I felt it was distracting, especially at the beginning of the sequence.


theta0 = Pi;
Manipulate[Row[{
Plot[x^2, {x, 0, 1}, PlotStyle -> {Thick, Black},
Filling -> Axis, BaselinePosition -> Axis, ImageSize -> Small],
RevolutionPlot3D[x^2, {x, 0, 1}, {t, theta0 - .001, T},
PlotRange -> {{0, 1}, {-1, 1}, {-1, 1}}, BoxRatios -> 1,

Boxed -> False, Axes -> False, ViewPoint -> {1, -2, 0},
Mesh -> None, RevolutionAxis -> "X", PerformanceGoal -> "Quality",
BaselinePosition -> Center, ImageSize -> Small]
}], {T, theta0, theta0 + 2 Pi}]

enter image description here


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...