Skip to main content

finite element method - How to apply different equations to different parts of a geometry in PDE?


I want to solve two coupled partial differential equations on two dimension. There are two variables v and m. The geometry is a disk. The variable v diffuses inside the disk until it reaches the boundary and then it converts to variable m. Variable m then diffuses on the boundary, on the edge of the disk. Variable m does not exist inside the disk, it only exists on the boundary. In the diagram below you see the summary of the problem: enter image description here


I use the set of equations below to define the problem: enter image description here


The first equation describes the diffusion of variable v inside the disk.


The second equation describes the conversion of variable v to variable m (the term alpha*v(x,y,t)) and the diffusion of variable m on the boundary of the disk, here it is a circle.


The last equation is the boundary condition at the boundary of the disk which accounts for the conversion of variable v to variable m. On the left ∇ is the gradient operator which indicates the flux of variable v on the boundary. It will appear as the Neumann boundary condition:


NeumannValue[-1*alpha*v[x, y, t], x^2 + y^2 == 1]


Problem:


My problem is that how I should tell Mathematica that in the system of equations below (also shown above before) the first equation applies to the disk and the second equation applies to the boundary of the disk? The way I solved it below, the value of variable m is calculated on the entire of the disk which is not desired. m has value only on the boundary while it diffuses there.


enter image description here


Here is the code in Mathematica, The symmetric initial condition of v is just for simplification, otherwise the initial distribution of v does not have to be symmetric or Gaussian and in practice it should be a random distribution. Also the Neumann boundary condition in general will depend on the value of other variables which only exist on the boundary (here for simplification it is not the case). For example protein (variable) m could detach from the boundary and converts to protein (variable) v with a rate proportional to m.:


alpha = 1.0;
geometry = Disk[];

sol = NDSolveValue[{D[v[x, y, t], t] ==
D[v[x, y, t], x, x] + D[v[x, y, t], y, y] +

NeumannValue[-1*alpha*v[x, y, t], x^2 + y^2 == 1],
D[m[x, y, t], t] ==
D[m[x, y, t], x, x] + D[m[x, y, t], y, y] + alpha*v[x, y, t],
m[x, y, 0] == 0, v[x, y, 0] == Exp[-((x^2 + y^2)/0.01)]}, {v,
m}, {x, y} \[Element] geometry, {t, 0, 10}];

v = sol[[1]];
m = sol[[2]];

ContourPlot[v[x, y, 1], {x, y} \[Element] geometry, PlotRange -> All,

PlotLegends -> Automatic]

enter image description here


ContourPlot[m[x, y, 10], {x, y} \[Element] geometry, PlotRange -> All,
PlotLegends -> Automatic]

enter image description here


Adding DirichletCondition[m[x, y, t] == 0, x^2 + y^2 < 1] to enforce the value of m inside the geometry (here the disk) gives this error:


NDSolveValue::bcnop: No places were found on the boundary where x^2+y^2<1 was True, so DirichletCondition[m==0,x^2+y^2<1] will effectively be ignored.


I hope at the end I can reproduce the results of the paper below in which several proteins diffuse inside a sphere and on its surface and convert to each other on the surface. The paper is open access:


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003396


Physical interpretation


The variable v and m represent two proteins. Protein v diffuses freely inside the cytosol (inside of the cell, here represented as a disk). Protein m is a membrane-bound protein that is it attaches to the cell's membrane (here the boundary of the disk) and only can exist as a membrane-bound protein. The protein v diffuses freely inside the disk and reaches the membrane or the boundary. There it converts to protein m with a rate that is proportional to the value of protein v on the membrane. The created membrane-bound protein m then diffuses on the membrane. Protein m cannot detach from the membrane and thus it must not exist in the cytosol (inside the disk).


Edit


I added this explanation to the question: The symmetric initial condition of v is just for simplification, otherwise the initial distribution of v does not have to be symmetric or Gaussian and in practice it should be a random distribution. Also the Neumann boundary condition in general will depend on the value of other variables which only exist on the boundary (here for simplification it is not the case). For example protein (variable) m could detach from the boundary and converts to protein (variable) v with a rate proportional to m.



Answer



Since I have the code to solve the original problem described in the article GDI-Mediated Cell Polarization in Yeast Provides Precise Spatial and Temporal Control of Cdc42 Signaling, I will give here a modification of this code for 2D. I did not manage to find the solution described in the article, since the system rather quickly evolves to an equilibrium state with all reasonable initial data. But something similar to clusters is obtained in 3D and a 2D.


Needs["NDSolve`FEM`"]; mesh = 
ImplicitRegion[x^2 + y^2 <= R^2, {x, y}]; mesh1 =

ImplicitRegion[R1^2 <= x^2 + y^2 <= R^2, {x, y}];
d2 = .03; d3 = 11 ; R = 4; R1 =
7/2; N42 = 3000; NB = 6500; N24 = 1000; α1 = 0.2; α2 =
0.12 /60; α3 = 1 ; β1 = 0.266 ; β2 = 0.28 ; \
β3 = 1; γ1 = 0.2667 ; γ2 = 0.35 ; δ1 = \
0.00297; δ2 = 0.35;
c0 = {.3, .65, .1}; m0 = {.0, .3, .65, 0.1};
C1[0][x_, y_] :=
c0[[1]]*(1 +
Sum[RandomReal[{-.01, .01}]*

Exp[-Norm[{x, y} - RandomReal[{-R, R}, 2]]^2], {i, 1, 10}]);
C2[0][x_, y_] :=
c0[[2]]*(1 +
Sum[RandomReal[{-.01, .01}]*
Exp[-Norm[{x, y} - RandomReal[{-R, R}, 2]]^2], {i, 1, 10}]);
C3[0][x_, y_] :=
c0[[3]]*(1 +
Sum[RandomReal[{-.01, .01}]*
Exp[-Norm[{x, y} - RandomReal[{-R, R}, 2]]^2], {i, 1, 10}]);
M1[0][x_, y_] :=

m0[[1]]*(1 +
Sum[RandomReal[{-.01, .01}]*
Exp[-Norm[{x, y} - RandomReal[{-R, R}, 2]]^2], {i, 1, 10}]);
M2[0][x_, y_] :=
m0[[2]]*(1 +
Sum[RandomReal[{-.01, .01}]*
Exp[-Norm[{x, y} - RandomReal[{-R, R}, 2]]^2], {i, 1, 10}]);
M3[0][x_, y_] :=
m0[[3]]*(1 +
Sum[RandomReal[{-.01, .01}]*

Exp[-Norm[{x, y} - RandomReal[{-R, R}, 2]]^2], {i, 1, 10}]);
M4[0][x_, y_] :=
m0[[4]]*(1 +
Sum[RandomReal[{-.01, .01}]*
Exp[-Norm[{x, y} - RandomReal[{-R, R}, 2]]^2], {i, 1, 10}]);
t0 = 1/2; n = 60;
Do[{C1[t], C2[t], C3[t]} =
NDSolveValue[{(c1[x, y] - C1[t - t0][x, y])/t0 -
d3*Laplacian[c1[x, y], {x, y}] ==
NeumannValue[-C1[t - t0][x,

y] (β1*M4[t - t0][x, y] + β2) + β3*
M2[t - t0][x, y], True], (c2[x, y] - C2[t - t0][x, y])/t0 -
d3*Laplacian[c2[x, y], {x, y}] ==
NeumannValue[-γ1*M1[t - t0][x, y] + γ2*
M3[t - t0][x, y], True], (c3[x, y] - C3[t - t0][x, y])/t0 -
d3*Laplacian[c3[x, y], {x, y}] ==
NeumannValue[-δ1*M3[t - t0][x, y]*
C3[t - t0][x, y] + δ2*M4[t - t0][x, y], True]}, {c1,
c2, c3}, {x, y} ∈ mesh,
Method -> {"FiniteElement",

InterpolationOrder -> {c1 -> 2, c2 -> 2, c3 -> 2},
"MeshOptions" -> {"MaxCellMeasure" -> 0.01, "MeshOrder" -> 2}}];
{M1[t], M2[t], M3[t], M4[t]} =
NDSolveValue[{(m1[x, y] - M1[t - t0][x, y])/t0 -
d2*Laplacian[m1[x, y], {x, y}] == -α3 M1[t - t0][x,
y] + β1 C1[t - t0][x, y] M4[t - t0][x, y] +
M2[t - t0][x,
y] (α2 + α1 M4[t - t0][x, y]), (m2[x, y] -
M2[t - t0][x, y])/t0 -
d2*Laplacian[m2[x, y], {x, y}] == β2 C1[t - t0][x,

y] + α3 M1[t - t0][x, y] - β3 M2[t - t0][x, y] +
M2[t - t0][x,
y] (-α2 - α1 M4[t - t0][x, y]), (m3[x, y] -
M3[t - t0][x, y])/t0 -
d2*Laplacian[m3[x, y], {x, y}] == γ1 C2[t - t0][x,
y] M1[t - t0][x, y] - γ2 M3[t - t0][x,
y] - δ1 C3[t - t0][x, y] M3[t - t0][x,
y] + δ2 M4[t - t0][x,
y], (m4[x, y] - M4[t - t0][x, y])/t0 -
d2*

Laplacian[m4[x, y], {x, y}] == δ1 C3[t - t0][x,
y] M3[t - t0][x, y] - δ2 M4[t - t0][x, y]}, {m1, m2,
m3, m4}, {x, y} ∈ mesh1,
Method -> {"FiniteElement",
InterpolationOrder -> {m1 -> 2, m2 -> 2, m3 -> 2, m4 -> 2},
"MeshOptions" -> {"MaxCellMeasure" -> 0.01,
"MeshOrder" -> 2}}];, {t, t0, n*t0, t0}] // Quiet

In this FIG. shows how the concentration of components changes with time in volume (left) and on the membrane (right)


ListPlot[{Table[{t, C1[t][0, z] /. z -> .99*R}, {t, 0, n*t0, t0}], 

Table[{t, C2[t][0, z] /. z -> .99*R}, {t, 0, n*t0, t0}],
Table[{t, C3[t][0, z] /. z -> .99*R}, {t, 0, n*t0, t0}]},
PlotLegends -> Automatic]

ListPlot[{Table[{t, M1[t][0, z] /. z -> .99*R}, {t, 0, n*t0, t0}],
Table[{t, M2[t][0, z] /. z -> .99*R}, {t, 0, n*t0, t0}],
Table[{t, M3[t][0, z] /. z -> .99*R}, {t, 0, n*t0, t0}],
Table[{t, M4[t][0, z] /. z -> .99*R}, {t, 0, n*t0, t0}]},
PlotLegends -> Automatic]


fig1


This figure shows a cluster on a membrane.


Table[DensityPlot[Evaluate[M1[t][x, y]], {x, -R, R}, {y, -R, R}, 
PlotLegends -> Automatic, ColorFunction -> Hue,
PlotLabel -> Row[{"t = ", t*1.}], PlotPoints -> 50], {t, 10*t0,
n*t0, 10*t0}]

fig2


Simplify the code to solve the problem that MOON formulated. We use the initial data as in Henrik Schumacher answer and compare the result with his code with the options $\alpha =1,\theta =1$ and "MaxCellMeasure" -> 0.01 at `t=0.4' (points on the figure). Here we use Cartesian coordinates, and the membrane is replaced by a narrow ring


Needs["NDSolve`FEM`"]; mesh = 

ImplicitRegion[x^2 + y^2 <= R^2, {x, y}]; mesh1 =
ImplicitRegion[R1^2 <= x^2 + y^2 <= R^2, {x, y}];
C0[x_, y_] := Exp[-20*Norm[{x + 1/2, y}]^2];
M0[x_, y_] := 0;
t0 = 1; d3 = 1; d2 = 1; R = 1; R1 = 9/10;
C1 = NDSolveValue[{D[c1[t, x, y], t] -
d3*Laplacian[c1[t, x, y], {x, y}] ==
NeumannValue[-c1[t, x, y], True], c1[0, x, y] == C0[x, y]},
c1, {t, 0, t0}, {x, y} ∈ mesh,
Method -> {"FiniteElement", InterpolationOrder -> {c1 -> 2},

"MeshOptions" -> {"MaxCellMeasure" -> 0.01, "MeshOrder" -> 2}}];
M1 = NDSolveValue[{D[m1[t, x, y], t] -
d2*Laplacian[m1[t, x, y], {x, y}] == C1[t, x, y],
m1[0, x, y] == M0[x, y]} ,
m1, {t, 0, t0}, {x, y} ∈ mesh1,
Method -> {"FiniteElement", InterpolationOrder -> {m1 -> 2},
"MeshOptions" -> {"MaxCellMeasure" -> 0.01, "MeshOrder" -> 2}}];

fig4 Slightly modify the code of Michael E2 to remove osillation from the border. Compare the result with the solution of equations using the Henrik Schumacher model with $\alpha =1,\theta =1$ and "MaxCellMeasure" -> 0.01 at `t=0.4' (points on the figure) and Michael E2 model


ClearAll[b, m, v, x, y, t];

alpha = 1.0; R1 = .9;
geometry = Disk[];

sol = NDSolveValue[{D[v[x, y, t], t] ==
D[v[x, y, t], x, x] + D[v[x, y, t], y, y] +
NeumannValue[-1*alpha*v[x, y, t], x^2 + y^2 == 1],
D[m[x, y, t], t] ==
UnitStep[
x^2 + y^2 - R1^2] (D[m[x, y, t], x, x] + D[m[x, y, t], y, y] +
alpha*v[x, y, t]), m[x, y, 0] == 0,

v[x, y, 0] == Exp[-20*((x + .5)^2 + y^2)]}, {v,
m}, {x, y} ∈ geometry, {t, 0, 10}]

vsol = sol[[1]];
msol = sol[[2]];

fig5 The concentration distribution on the membrane in our model fig6


The concentration distribution on the disk in Michael E2 model fig7


Modifier code MK, add options in NDSolve. Compare the result with the solution of equations using the Henrik Schumacher model with $\alpha =1,\theta =1$ and "MaxCellMeasure" -> 0.01 at `t=0.4' (points on the figure) and MK model. Note the good agreement of the data on the membrane (in both models, the Laplace operator on the circle is used)


alpha = 1.0;

geometry = Disk[];

{x0, y0} = {-.5, .0};

sol = NDSolve[{D[v[x, y, t], t] ==
D[v[x, y, t], x, x] + D[v[x, y, t], y, y] +
NeumannValue[-1*alpha*v[x, y, t], x^2 + y^2 == 1],
v[x, y, 0] == Exp[-20*((x - x0)^2 + (y - y0)^2)]},
v, {x, y} ∈ geometry, {t, 0, 10},
Method -> {"FiniteElement", InterpolationOrder -> {v -> 2},

"MeshOptions" -> {"MaxCellMeasure" -> 0.01, "MeshOrder" -> 2}}];

vsol = v /. sol[[1, 1]];

vBoundary[phi_, t_] := vsol[.99 Cos[phi], .99 Sin[phi], t]

sol = NDSolve[{D[m[phi, t], t] ==
D[m[phi, t], {phi, 2}] + alpha*vBoundary[phi, t],
PeriodicBoundaryCondition[m[phi, t], phi == 2 π,
Function[x, x - 2 π]], m[phi, 0] == 0},

m, {phi, 0, 2 π}, {t, 0, 10}];

msol = m /. sol[[1, 1]];

fig8


Finally, back to our source code. Compare the result with the solution of equations using the Henrik Schumacher model with $\alpha =1,\theta =1$ and "MaxCellMeasure" -> 0.01 at `t=0.4' (points on the figure) and our model. We note a good coincidence of data on the membrane (in both models, an explicit Euler in time is used):


Needs["NDSolve`FEM`"]; mesh = 
ImplicitRegion[x^2 + y^2 <= R^2, {x, y}]; mesh1 =
ImplicitRegion[R1^2 <= x^2 + y^2 <= R^2, {x, y}];
d2 = 1; d3 = 1 ; R = 1; R1 = 9/10;

C1[0][x_, y_] := Exp[-20*Norm[{x + 1/2, y}]^2];
M1[0][x_, y_] := 0;

t0 = 1/50; n = 20;
Do[C1[t] =
NDSolveValue[(c1[x, y] - C1[t - t0][x, y])/t0 -
d3*Laplacian[c1[x, y], {x, y}] == NeumannValue[-c1[x, y], True],
c1, {x, y} ∈ mesh,
Method -> {"FiniteElement", InterpolationOrder -> {c1 -> 2},
"MeshOptions" -> {"MaxCellMeasure" -> 0.01, "MeshOrder" -> 2}}];

M1[t] =
NDSolveValue[(m1[x, y] - M1[t - t0][x, y])/t0 -
d2*Laplacian[m1[x, y], {x, y}] == C1[t][x, y] ,
m1, {x, y} ∈ mesh1,
Method -> {"FiniteElement", InterpolationOrder -> {m1 -> 2},
"MeshOptions" -> {"MaxCellMeasure" -> 0.01,
"MeshOrder" -> 2}}];, {t, t0, n*t0, t0}] // Quiet

fig9


As I promised, let's move on to the 3D model. We consider a system of 7 nonlinear equations for seven functions depending on four variables [t,x,y,z]. Three functions are defined in the whole region and four functions are defined on the border (membrane). We use an approximate model in which the membrane is replaced by a spherical layer. We have shown that in the case of 2D this approximation agrees well with other models. Initial system of equations and boundary conditions I took from the article as



fig11


We use the following notation {C1, C2, C3} = {cD, cB, cG}; {M1, M2, M3, M4} = {mT, mD, mB, mBG}. Functions {c1,c2,c3,m1,m2,m3,m4} are used at each time step. Here is the working code, but there are warnings that the solution in 3D is not unique. This example shows the formation of a cluster on a membrane. The initial data for each function are given as a constant + 10 Gaussian distribution with random parameters. The number of random parameters has little effect on the dynamics, but affects the number of clusters on the membrane.


Needs["NDSolve`FEM`"]; mesh = ImplicitRegion[x^2 + y^2 + z^2 <= R^2, {x, y, z}]; mesh1 = ImplicitRegion[(9*(R/10))^2 <= x^2 + y^2 + z^2 <= R^2, {x, y, z}]; 
d2 = 0.03; d3 = 11; R = 4; N42 = 3000; NB = 6500; N24 = 1000; α1 = 0.2; α2 = 0.12/60; α3 = 1; β1 = 0.266; β2 = 0.28; β3 = 1; γ1 = 0.2667; γ2 = 0.35;
δ1 = 0.00297; δ2 = 0.35;
c0 = {3, 6.5, 1}; m0 = {3, 3, 6.5, 1}; a = 1/30;
C1[0][x_, y_, z_] := c0[[1]] + Sum[RandomReal[{-a, a}]*Exp[-Norm[{x, y, z} - RandomReal[{-R, R}, 3]]^2], {i, 1, 10}];
C2[0][x_, y_, z_] := c0[[2]] + Sum[RandomReal[{-a, a}]*Exp[-Norm[{x, y, z} - RandomReal[{-R, R}, 3]]^2], {i, 1, 10}];
C3[0][x_, y_, z_] := c0[[3]] + Sum[RandomReal[{-a, a}]*Exp[-Norm[{x, y, z} - RandomReal[{-R, R}, 3]]^2], {i, 1, 10}];
M1[0][x_, y_, z_] := m0[[1]] + Sum[RandomReal[{-a, a}]*Exp[-Norm[{x, y, z} - RandomReal[{-R, R}, 3]]^2], {i, 1, 10}];

M2[0][x_, y_, z_] := m0[[2]] + Sum[RandomReal[{-a, a}]*Exp[-Norm[{x, y, z} - RandomReal[{-R, R}, 3]]^2], {i, 1, 10}];
M3[0][x_, y_, z_] := m0[[3]] + Sum[RandomReal[{-a, a}]*Exp[-Norm[{x, y, z} - RandomReal[{-R, R}, 3]]^2], {i, 1, 10}];
M4[0][x_, y_, z_] := m0[[4]] + Sum[RandomReal[{-a, a}]*Exp[-Norm[{x, y, z} - RandomReal[{-R, R}, 3]]^2], {i, 1, 10}];
t0 = 1/10; n = 40;
Quiet[Do[{C1[t], C2[t], C3[t]} = NDSolveValue[{(c1[x, y, z] - C1[t - t0][x, y, z])/t0 - d3*Laplacian[c1[x, y, z], {x, y, z}] ==
NeumannValue[(-C1[t - t0][x, y, z])*(β1*M4[t - t0][x, y, z] + β2) + β3*M2[t - t0][x, y, z], True],
(c2[x, y, z] - C2[t - t0][x, y, z])/t0 - d3*Laplacian[c2[x, y, z], {x, y, z}] == NeumannValue[(-γ1)*M1[t - t0][x, y, z] + γ2*M3[t - t0][x, y, z], True],
(c3[x, y, z] - C3[t - t0][x, y, z])/t0 - d3*Laplacian[c3[x, y, z], {x, y, z}] == NeumannValue[(-δ1)*M3[t - t0][x, y, z]*C3[t - t0][x, y, z] +
δ2*M4[t - t0][x, y, z], True]}, {c1, c2, c3}, Element[{x, y, z}, mesh],
Method -> {"FiniteElement", InterpolationOrder -> {c1 -> 2, c2 -> 2, c3 -> 2}}]; {M1[t], M2[t], M3[t], M4[t]} =

NDSolveValue[{(m1[x, y, z] - M1[t - t0][x, y, z])/t0 - d2*Laplacian[m1[x, y, z], {x, y, z}] == (-α3)*M1[t - t0][x, y, z] +
β1*C1[t - t0][x, y, z]*M4[t - t0][x, y, z] + M2[t - t0][x, y, z]*(α2 + α1*M4[t - t0][x, y, z]),
(m2[x, y, z] - M2[t - t0][x, y, z])/t0 - d2*Laplacian[m2[x, y, z], {x, y, z}] == β2*C1[t - t0][x, y, z] + α3*M1[t - t0][x, y, z] -
β3*M2[t - t0][x, y, z] + M2[t - t0][x, y, z]*(-α2 - α1*M4[t - t0][x, y, z]),
(m3[x, y, z] - M3[t - t0][x, y, z])/t0 - d2*Laplacian[m3[x, y, z], {x, y, z}] == γ1*C2[t - t0][x, y, z]*M1[t - t0][x, y, z] - γ2*M3[t - t0][x, y, z] -
δ1*C3[t - t0][x, y, z]*M3[t - t0][x, y, z] + δ2*M4[t - t0][x, y, z], (m4[x, y, z] - M4[t - t0][x, y, z])/t0 - d2*Laplacian[m4[x, y, z], {x, y, z}] ==
δ1*C3[t - t0][x, y, z]*M3[t - t0][x, y, z] - δ2*M4[t - t0][x, y, z]}, {m1, m2, m3, m4}, Element[{x, y, z}, mesh1],
Method -> {"FiniteElement", InterpolationOrder -> {m1 -> 2, m2 -> 2, m3 -> 2, m4 -> 2}}]; , {t, t0, n*t0, t0}]]

The distribution of $m_T,m_D$ on the membrane



Table[DensityPlot3D[
Evaluate[M1[t][x, y, z]], {x, -R, R}, {y, -R, R}, {z, -R, R},
PlotLegends -> Automatic, ColorFunction -> Hue,
PlotLabel -> Row[{"t = ", t*1.}]], {t, 2*t0, n*t0, 6*t0}]

Table[DensityPlot3D[
Evaluate[M2[t][x, y, z]], {x, -R, R}, {y, -R, R}, {z, -R, R},
PlotLegends -> Automatic, ColorFunction -> Hue,
PlotLabel -> Row[{"t = ", t*1.}]], {t, 2*t0, n*t0, 6*t0}]


fig12


The distribution of $m_T,m_D$ on the membrane with multiple clusters fig13


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.