Skip to main content

parallelization - Effective parallel processing of large items


When trying to parallelize a task which involves items of larger sizes, I cannot achieve efficient parallelization. To demonstrate this, we launch some kernels:


LaunchKernels[12];


I am facing this problem with real-world data which I cannot share here. Instead, we generate some random data and adjust the following parameters to a) reflect the problem and b) get some reasonable timings:


itemsize = 20000; (* The size of an individual item *)
numberofitems = 200; (* Number of items to process *)
difficulty = 500;(* Processing diffculty: the part of an individual item that is actually processed *)

Now let's generate the random values:


randomValues = Parallelize@Table[
Transpose@{RandomReal[1, itemsize], RandomReal[1, itemsize]},
{numberofitems}
];


An individual item has 320 kB, the full dataset is 64 MB in size:


ByteCount /@ {randomValues[[1]], randomValues}
(* {320152, 64032072} *)

Now we compare Map and ParallelMap with an arbitrary function that takes a reasonable amount of time to process, like FindCurvePath.


map = Map[
FindCurvePath[#[[1 ;; difficulty]]] &,
randomValues
]; // AbsoluteTiming


(* {11.9619, Null} *)

pmap = ParallelMap[
FindCurvePath[#[[1 ;; difficulty]]] &,
randomValues,
Method -> "ItemsPerEvaluation" -> 10
]; // AbsoluteTiming

(* {23.6492, Null} *)


Surprisingly, the parallel version is twice as slow. When watching the CPU usage of the main kernel vs. the subkernels, it is notable that most of the evaluation time is spent at the beginning in the main kernel. Then, processing in the subkernels is done in less than 2 seconds.


Note that I intentionally made the items larger than what is actually processed, so the full items of 320 kB in size (20 000 * 20 000 random reals) need to be distributed to the subkernels. If we reduce the item size to the amount that is actually processed, things change drastically:


pmap2 = ParallelMap[
FindCurvePath[#[[1 ;; difficulty]]] &,
randomValues[[All, 1 ;; difficulty]], (* only use a small part of the items *)
Method -> "ItemsPerEvaluation" -> 10
]; // AbsoluteTiming

(* {2.03152, Null} *)


Now we get a performance improvement as expected. The result is the same:


map === pmap === pmap2
(* True *)

Apparently, the distribution of the large items to the subkernels is the bottleneck. Note that unlike in this demonstration, my real-world application does need all the data that is present in the items.


I did not find any way to improve the parallel performance. Changing the method to FinestGrained or CorsestGrained performs worse. Any ideas how to make parallel processing efficient?



Answer



Seralization of the data to a ByteArray object seems to overcome the data transfer bottleneck. The necessary functions BinarySerialize and BinaryDeserialize have been introduced in 11.1.


Here is a simple function implementing a ParallelMap which serializes the data before the transfer to the subkernels and makes the subkernels deseralize it before processing:



ParallelMapSerialized[f_, data_, opts___] := ParallelMap[
f[BinaryDeserialize@#] &,
BinarySerialize /@ data,
opts
]

Running the benchmark again:


map = Map[
FindCurvePath[#[[1 ;; difficulty]]] &,
randomValues

]; // AbsoluteTiming

(* {9.60715, Null} *)

pmap = ParallelMap[
FindCurvePath[#[[1 ;; difficulty]]] &,
randomValues,
Method -> "ItemsPerEvaluation" -> 10
]; // AbsoluteTiming


(* {17.5937, Null} *)

pmapserialized = ParallelMapSerialized[
FindCurvePath[#[[1 ;; difficulty]]] &,
randomValues,
Method -> "ItemsPerEvaluation" -> 10
]; // AbsoluteTiming

(* {1.85387, Null} *)


pmap === pmap2 === pmapserialized
(* True *)

Serialization led to a performance increase of almost 10-fold compared to ParallelMap, and to a 5-fold increase compared to serial processing.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...