Skip to main content

equation solving - How to pick a solution from a list of solutions using a test?


I have a list of solutions that depends on a parameter b3 and I'd like to get the solution for which the x value is minimal when the parameter value is substituted. for example:


b3 =.;
f[x_] := x^2 - b3
solutions = Solve[f[x] == 0, x]


{{x -> -Sqrt[b3]}, {x -> Sqrt[b3]}}

I'm trying to get the element for which x/.element is minimal (which should be b3-depended). I started with:



f[x_] := x^2 - b3
solutions = Solve[f[x] == 0, x]
minsol := Pick[solutions, x /. solutions, Min[x /.solutions]]
pickminimum = minsol /. {b3 -> 2}

but when trying the above I got:



Pick::incomp: "Expressions {{x->-\[Sqrt]b3},{x->\[Sqrt]b3}} and {-\[Sqrt]b3,\[Sqrt]b3} have incompatible shapes."
Pick::incomp: "Expressions {{x->-\[Sqrt]2},{x->\[Sqrt]2}} and {-\[Sqrt]2,\[Sqrt]2} have incompatible shapes"


Then I tried to remove the extra {}:


f[x_] := x^2 - b3
solutions = Solve[f[x] == 0, x]
minsol := Pick[((#[[1]]) & /@ solutions), x /. solutions, Min[x /. solutions]]
pickminimum = minsol /. {b3 -> 2};

for which I got:



Rule::argr: Rule called with 1 argument; 2 arguments are expected
Rule::argrx: Rule called with 0 arguments; 2 arguments are expected.


Trying just to see if it works for some list, also got me nowhere:


f[x_] := x^2 - b3
solutions = Solve[f[x] == 0, x];
minsol := Pick[{1, 2}, x /. solutions, Min[x /. solutions]]
minsol /. {b3 -> 2}


{}


I think I understand why I get the first error - but I have no idea why the second/third won't work.


clarification I'd like to have an expression for any value of b3. this is because later I'm interested at various quantities which are related to this point for many values of b3 (for example draw the first derivative of this 'minimal point' as a function of b3). so I'm less interested in a solution for a particular value of b3



Answer



Your updated request makes no sense me unless you mean something much simpler that you appeared to be attempting. Perhaps all you want is this:


min = Min[x /. solutions]


Min[-Sqrt[b3], Sqrt[b3]]

min /. b3 -> 2



-Sqrt[2]

I hope this helps. If not I'm at a loss.




There are a couple of problems here. First, as Nasser comments your replacement is done out of order. If you correct that to:


Pick[solutions, #, Min@#] &[x /. solutions /. b3 -> 2]



Pick::incomp: Expressions {{x->-Sqrt[b3]},{x->Sqrt[b3]}} and {-Sqrt[2],Sqrt[2]} have incompatible shapes. >>


Pick[{{x -> -Sqrt[b3]}, {x -> Sqrt[b3]}}, {-Sqrt[2], Sqrt[2]}, -Sqrt[2]]

You still get an error because Pick wants matching structures for the first two arguments. It is IMHO the wrong tool for this particular task.


Instead I would use Position:


solutions ~Extract~ Position[#, Min@#] &[x /. solutions /. b3 -> 2]


{{x -> -Sqrt[b3]}}


Or a bit more advanced, Ordering:


solutions ~Extract~ Ordering[x /. solutions /. b3 -> 2, 1]


{x -> -Sqrt[b3]}

Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...