Skip to main content

How to set return type of `InterpolatingFunction ` in compile


Consider this


s = C1 /. 
First@NDSolve[{I C1'[t] == C2[t] E^(-I t),
I C2'[t] == C1[t] E^(I t), C1[0.] == 1., C2[0.] == 0.}, {C1, C2}, {t, 0., 10.}]
sol[t_] :=
Piecewise[{{s[t], t <= 10.}, {Sin[t], t <= 20.}, {Cos[t], t <= 30}}, 0.]
On["CompilerWarnings"]
f3 = Compile[{{t, _Real}}, Evaluate@sol[t]]


I get warnings because compile doesn't know the return type of InterpolatingFunction



Compile::noinfo: No information is available for compilation of InterpolatingFunction[{{0.,10.}},{4,31,1,{107},{4},0,0,0,0,Automatic},<<1>>,{Developer`PackedArrayForm,{0,2,4,6,8,10,12,<<38>>,90,92,94,96,98,<<58>>},{1. +0. I,0. +0. I,1. +0. I,-0.000102139+0. I,1. +1.06555*10^-12 I,<<42>>,-0.5557+0.183522 I,0.767381 +0.0556081 I,-0.598783+0.22247 I,<<164>>}},{Automatic}][t] . The compiler will use an external evaluation and make assumptions about the return type. >>



and it failed to use the compiled version


f3[5.]


During evaluation of In[38]:= CompiledFunction::cfex: Could not complete external evaluation at instruction 3; proceeding with uncompiled evaluation. >>




(*-0.787326 - 0.231525 I*)

so I tried to set the return type like this


f3 = Compile[{{t, _Real}}, 
Evaluate@sol[t], {{_InterpolatingFunction, _Complex}}]

or


f3 = Compile[{{t, _Real}}, Evaluate@sol[t], {{InterpolatingFunction[__], _Complex}}]

both don't work.



In contrary, Fourier seems also has this problem(example taken from here)


Compile[{{m, _Real, 2}}, Fourier[m]][Table[N[i - j], {i, 2}, {j, 2}]]


CompiledFunction::cfex: Could not complete external evaluation at instruction 1; proceeding with uncompiled evaluation. >>



(*{{0., 1.}, {-1., 0.}}*)

but after specify the return type, it works


Compile[{{m, _Real, 2}}, Fourier[m], {{_Fourier, _Complex, 2}}][Table[N[i - j], {i, 2}, {j, 2}]]

(*{{0. + 0. I, 1. + 0. I}, {-1. + 0. I, 0. + 0. I}}*)

So how should I specify the return type of InterpolationFunction?



Answer



Your pattern is wrong. I would try the following


f3 = Compile[{{t, _Real}}, 
Evaluate@sol[t], {{InterpolatingFunction[__][t], _Complex}}]

which compiles without warning and lets you evaluate


f3[.5]

(* Out[112]= 0.880101 + 0.0200644 I *)

without a message. The problem with your pattern is that you used _InterpolatingFunction which means an expression with the Head InterpolatingFunction.


If you now check the this with the s[t] you used, then you see


Head[s[t]]
(* InterpolatingFunction[{{0.,10.}},<>] *)

Therefore, if you wanted to say it your way, you should be able to use


f3 = Function[expr, 
Compile[{{t, _Real}},

expr, {{_InterpolatingFunction[__], _Complex}}]][s[t]]

which again works on my machine.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...