Skip to main content

interpolation - Make an offset curve (parallel curve)


I have a polynomial curve that I got through interpolation.


pts1 = {{0, 0}, {12, 27}, {31, 52}, {58, 73}, {81, 85}};
y1 = pts1[[#, 1]] & /@ Range[Length[pts1]];
eq1 = Fit[pts1, {1, x, x^2, x^3, x^4}, x]//Chop;



$-2.74861*10^{-6}x⁴+0.00059554 x³-0.0516843 x²+2.7892 x$



eq1 /. x -> y1;


${0,27,52,73,85}$



pl1 = Plot[eq1, {x, Min[y1], Max[y1]}, Epilog -> {Blue, PointSize[0.02], Point[pts1]}, PlotRange -> {{-10, 100}, {-10, 100}}, AspectRatio -> 1, PlotStyle -> {Orange, Thick}]

I want to make another offset curve in 10 units. But I do not know how to proceed within Mathematica.



enter image description here


I made an offset through another software using multiple circles with a 10-unit radius to get the points I need.


enter image description here


Anyway, what would be the appropriate command to get these points?



Answer



This involves an algebraic curve so it can be done in closed form (one approach already shown does this, in the parametric form). We'll do the interpolation below at high precision in order to make some later computations more reliable.


pts1 = {{0, 0}, {12, 27}, {31, 52}, {58, 73}, {81, 85}};
f[x_] = Fit[N[pts1, 200], {1, x, x^2, x^3, x^4}, x];
N[f[x]]


(* Out[1252]= 0. + 2.78920381052 x - 0.0516843269209 x^2 +
0.000595539716825 x^3 - 2.74861498447*10^-6 x^4 *)

Here we find the parametric form of the (lower) offset curve).


offset[x_] = 
With[{deriv = D[{x, f[x]}, x]},
{grad = {-deriv[[2]], deriv[[1]]}},
{x, f[x]} - grad/Sqrt[grad.grad]*10];

We check the plot.



ParametricPlot[{{t, f[t]}, offset[t]}, {t, 0, 80}]

plot


We can also implicitize. This part required the high precision interpolation. We could use Rationalize but that can get into round-off and cancellation error problems in plotting, since coefficients appear at very different scales.


imp = First[
GroebnerBasis[Together[{x, y} - offset[t]], {x, y}, t,
MonomialOrder -> EliminationOrder]];
imp // N

(* Out[1260]= -6.73373194281*10^25 + 5.56558925951*10^24 x +

3.6738758353*10^23 x^2 - 4.34415318895*10^22 x^3 +
1.93344441642*10^21 x^4 - 5.36588154643*10^19 x^5 +
1.06609597248*10^18 x^6 - 1.60542472424*10^16 x^7 +
1.88490826277*10^14 x^8 - 1.74235671779*10^12 x^9 +
1.26230731848*10^10 x^10 - 7.01480518001*10^7 x^11 +
284576.519771 x^12 - 758.341572269 x^13 + 1. x^14 +
3.72787534059*10^24 y - 6.8504825964*10^23 x y +
9.94066556163*10^21 x^2 y + 7.41868236137*10^20 x^3 y -
4.34299189813*10^19 x^4 y + 1.19168781004*10^18 x^5 y -
2.1498342949*10^16 x^6 y + 2.77290008879*10^14 x^7 y -

2.63253515622*10^12 x^8 y + 1.82904347319*10^10 x^9 y -
8.95087000739*10^7 x^10 y + 280923.407204 x^11 y -
426.500272743 x^12 y - 3.17385078171*10^22 y^2 +
2.18287264042*10^22 x y^2 - 3.93259394774*10^20 x^2 y^2 -
1.00071010929*10^19 x^3 y^2 + 6.86935186234*10^17 x^4 y^2 -
1.75325222649*10^16 x^5 y^2 + 2.83739730618*10^14 x^6 y^2 -
3.21684582573*10^12 x^7 y^2 + 2.65009867828*10^10 x^8 y^2 -
1.59027982886*10^8 x^9 y^2 + 677296.69588 x^10 y^2 -
1950.02118583 x^11 y^2 + 3. x^12 y^2 - 1.48945282252*10^21 y^3 -
4.62703214764*10^20 x y^3 + 8.5373151706*10^18 x^2 y^3 +

6.50159149141*10^16 x^3 y^3 - 6.85046668404*10^15 x^4 y^3 +
1.58285949288*10^14 x^5 y^3 - 2.17546347848*10^12 x^6 y^3 +
1.98184395157*10^10 x^7 y^3 - 1.20720722952*10^8 x^8 y^3 +
465742.200007 x^9 y^3 - 853.000545485 x^10 y^3 +
6.2893710958*10^19 y^4 + 6.33039722844*10^18 x y^4 -
1.1302847025*10^17 x^2 y^4 + 4.83188192567*10^13 x^3 y^4 +
4.60017785742*10^13 x^4 y^4 - 9.9826564209*10^11 x^5 y^4 +
1.20048427437*10^10 x^6 y^4 - 9.37112169389*10^7 x^7 y^4 +
476873.182752 x^8 y^4 - 1625.01765486 x^9 y^4 + 3. x^10 y^4 -
1.09303426085*10^18 y^5 - 5.50342304678*10^16 x y^5 +

9.17636707233*10^14 x^2 y^5 - 4.3681823605*10^12 x^3 y^5 -
1.76328081245*10^11 x^4 y^5 + 3.57598551957*10^9 x^5 y^5 -
3.37083626949*10^7 x^6 y^5 + 184818.792803 x^7 y^5 -
426.500272743 x^8 y^5 + 1.03689348135*10^16 y^6 +
2.95870424611*10^14 x y^6 - 4.66457552293*10^12 x^2 y^6 +
3.02885768057*10^10 x^3 y^6 + 4.65196245499*10^8 x^4 y^6 -
1.00479219318*10^7 x^5 y^6 + 84153.0066438 x^6 y^6 -
433.338041296 x^7 y^6 + 1. x^8 y^6 - 5.50780682701*10^13 y^7 -
7.85681314181*10^11 x y^7 + 1.41189443972*10^10 x^2 y^7 -
1.57656872186*10^8 x^3 y^7 + 727639.19694 x^4 y^7 +

1.32364700231*10^11 y^8 *)

We can check the zero contour.


ContourPlot[imp == 0, {x, 0, 60}, {y, 0, 80}]

plot


One will notice we got both upper and lower offsets. This is due to the fact that GroebnerBasis internals will make polynomial relations out of radicals, in effect losing information about sign on square roots.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...