Skip to main content

equation solving - How to find a tangent line with 2 points of tangency for a curve?


Say I have a function like this:


f[x_] := 4 x^4 - 9 x^3 - x^2 + 10;
Plot[f[x], {x, -1, 2}]


enter image description here


It's obvious that there's a tangent line with 2 points of tangency here:


enter image description here


The problem is, how can I find this line programmatically for any such curve given?




UPDATE: Sorry, I lied. My function is actually f[\[CurlyPhi]_] := 1.100955 \[CurlyPhi] (1 - \[CurlyPhi]) + \[CurlyPhi]/9.99968* Log[\[CurlyPhi]] + (1 - \[CurlyPhi]) Log[1 - \[CurlyPhi]], which, even with a "Rationalize" at the head, yields a error message as follows:



This system cannot be solved with the methods available to Reduce.




What can I do about this?



Answer



Introduction:


We are looking for two distinct values of $x$ for which a generic line and your function have 1) the same $y$ value (i.e. the line touches the curve) and 2) the same derivative (i.e. the line is tangent to the curve).


We can set up the following system of equations spelling out these conditions:


y[x_] := a x + b                      (* a generic line *)
f[x_] := 4 x^4 - 9 x^3 - x^2 + 10; (* your function *)

sol = List@ToRules@Reduce[
{y[x1] == f[x1],

y'[x1] == f'[x1],
y[x2] == f[x2],
y'[x2] == f'[x2],
x2 != x1},
{x1, x2}
]

solutions


Notice that Solve wouldn't work here, because there are no general solutions valid for all values of the parameters (indeed, Solve will return the empty set). Reduce will generate conditions valid for some values of the parameters $a$ and $b$, which is what we are looking for. Reduce returns equations as results, but I converted those to substitution rules for plotting.


Plot[

{f[x], y[x] /. sol}, {x, -1, 2},
Epilog -> {PointSize[0.015], Point[{{x1, f[x1]}, {x2, f[x2]}}] //. sol}
]

plot


A self-contained function:


We can package this in a function:


Clear[doubleTangent]
doubleTangent[f_, range_ /; VectorQ[range, NumericQ] && Dimensions[range] == {2}] :=
Module[

{x1, x2, a, b, y, sol},
y[x_] := a x + b;
sol = Solve[{
f[x1] == y[x1], f[x2] == y[x2],
f'[x1] == y'[x1], f'[x2] == y'[x2], x1 != x2},
{x1, x2, a, b}, Reals
];
Plot[
{f[x], y[x] /. sol},
Evaluate@Flatten@{x, range},

PlotLegends -> {"function", "tangent"},
Epilog -> {
ReplaceRepeated[
{
PointSize[0.02],
Tooltip[Point[{#, f[#]}], Round[{#, f[#]}, 0.01]] & /@ {x1, x2}
},
N@sol
],
Inset[

"a = " <> ToString[N[a /. First@sol]] <> "\nb = " <> ToString[N[b /. First@sol]],
Scaled[{0.9, 0.9}], Alignment -> Left
]
}
]
]

This function will return the same result found above, with annotations, when used as follows:


doubleTangent[4 #^4 - 9 #^3 - #^2 + 10 &, {-1, 2}]


old example with doubleTangent


Yet another case:


doubleTangent[3 #^4 - 12 #^2 + 5 # + 9 &, {-3, 3}]

another example


Using a numerical solver for non-polynomial functions:


Here is a version relying on a numerical solver (FindRoot) to solve the system of equations in those cases in which Solve or Reduce are unable to provide a solution. Of course, the method is quite a bit more brittle, and initial (even rough) estimates must be provided of the positions of the points of tangency. It is fiddly, but it works nonetheless :-)


Clear[doubleTangentNumeric]

doubleTangentNumeric[

f_,
range_ /; VectorQ[range, NumericQ] && Dimensions[range] == {2},
initval_ /; VectorQ[initval, NumericQ] && Dimensions[initval] == {2}
] := Module[
{x1, x2, a, b, y, sol},
y[x_] := a x + b;
(* This is the BIG CHANGE; using a numerical solver rather than Solve or Reduce *)
sol = FindRoot[
{f[x1] == y[x1],
f[x2] == y[x2],

f'[x1] == y'[x1],
f'[x2] == y'[x2]},
{{x1, initval[[1]]},
{x2, initval[[2]]},
{a, 1}, {b, 1}},
WorkingPrecision -> 30, MaxIterations -> 1000
];
Plot[
{f[x], y[x] /. sol},
Evaluate@Flatten@{x, range},

PlotLegends -> {"function", "tangent"},

(* Replaced First@sol with sol, since only one solution is returned by FindRoot *)
Epilog -> {
ReplaceRepeated[{PointSize[0.02],
Tooltip[Point[{#, f[#]}], Round[{#, f[#]}, 0.01]] & /@ {x1, x2}}, N@sol],
Inset[
"a = " <> ToString[N[a /. sol]] <> "\nb = " <> ToString[N[b /. sol]],
Scaled[{0.8, 0.8}], Alignment -> Left]
}

]
]

We can now try it on the function from your comment:


f = Log[1 - #1] (1 - #1) + (3125 Log[#1] #1)/31249 + (73666 (1 - #1) #1)/66911 &;

doubleTangentNumeric[f, {0, 1}, {0.1, 0.9}]

numerical results


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...