Skip to main content

equation solving - Finding Intersections Between Arbitrary Surface and A Line


I have a self-intersecting surface H defined as follows:


M = 0; phi = Pi/2;


b1 = {{-Sqrt[3]/2}, {3/2}};
b2 = {{-Sqrt[3]/2}, {-3/2}};
b3 = {{Sqrt[3]}, {0}};

hx[kx_, ky_] := 1 + Cos[{kx, ky}.b1] + Cos[{kx, ky}.b2]
hy[kx_, ky_] := Sin[{kx, ky}.b1] - Sin[{kx, ky}.b2]
hz[kx_, ky_] :=
M - 2 Sin[
phi] (Sin[{kx, ky}.b1] + Sin[{kx, ky}.b2] + Sin[{kx, ky}.b3])
H[kx_, ky_] =

Flatten[{hx[kx, ky], hy[kx, ky], hz[kx, ky]}, 1] // Simplify;

and I wish to find the number of times a line from the origin to some point {10, 10, 10} intersects with this surface.


What I have tried:




  1. Going off this reference - Graphics3D: Finding intersection of 3d objects and lines - I attempted to define a Region and line as follows:


    R = ParametricRegion[{H[u, v], 1.8 <= u <= 5.5 && -2.2 <= v <= 2.2}, {u,v}]; 
    TheLine = Line[{{0,0,0}, {10,10,10}}];


    and continue with the method given. However, Mathematica does not correctly give me the number of intersections, as it does not identify H as a properly defined Region. Additionally, my arbitrary surface is apparently "not a proper Graphics3D primitive or directive".




  2. To tackle this numerically, I tried populating a table of coordinates for the line and comparing it with values of my surface to see where the difference between coordinates for rows would be least (after ordering rows in ascending order). The line now goes as:


    p1 = {0, 0, 0};
    p2 = {10, 0, 10};
    v = p2 - p1;
    TheLine[t_] := p1 + t v

    However, this method is problematic because I miss several potential points. I read online that this could have worked if the third component of H is a function of the first two: H = {x,y,z(x,y)}. However, this is not the case.





  3. I tried solving the following system of 'equations':


    Solve[{x, y, z} \[Element] R && {x, y, z} \[Element] theLine, {x, y, z}, Reals]

    but this takes forever to run. I doubt this would work.


    Additionally, I don't think that I can solve for a system of equations like https://www.wolfram.com/mathematica/new-in-10/basic-and-formula-regions/surface-intersection.html in my case because a line cannot have a stand-alone equation of the form l(x,y,z) because a line is the intersection of two planes.




Perhaps I am missing something trivial, but none of the other potential solutions on this website seem to work. Therefore I would appreciate insight on any approach that would work! Thanks!




Answer



(I managed to borrow someone else's computer for a few minutes...)


Before anything else: using actual vectors instead of $2\times 1$ matrices will make constructing your parametric equations much easier. Thus:


M = 0; ϕ = π/2;
b1 = {-Sqrt[3]/2, 3/2}; b2 = {-Sqrt[3]/2, -3/2}; b3 = {Sqrt[3], 0};

Set up the parametric equations:


eqs = Thread[{x, y, z} == {1 + Cos[{kx, ky}.b1] + Cos[{kx, ky}.b2], 
Sin[{kx, ky}.b1] - Sin[{kx, ky}.b2],
M - 2 Sin[ϕ] (Sin[{kx, ky}.b1] + Sin[{kx, ky}.b2] +

Sin[{kx, ky}.b3])}];

Now, we can use GroebnerBasis[] to derive the implicit Cartesian equation:


impl = GroebnerBasis[Join[TrigExpand[eqs],
{Cos[(Sqrt[3] kx)/2]^2 + Sin[(Sqrt[3] kx)/2]^2 == 1,
Cos[ky/2]^2 + Sin[ky/2]^2 == 1}], {x, y, z},
{Cos[(Sqrt[3] kx)/2], Sin[(Sqrt[3] kx)/2],
Cos[ky/2], Sin[ky/2]}][[1]] // FullSimplify
(3 + (-4 + x) x + y^2)^2 (-3 + (-2 + x) x + y^2) + ((-1 + x)^2 + y^2) z^2


Deriving the intersection points is then as easy as


Solve[impl == 0, {x, y, z} ∈ InfiniteLine[{{0, 0, 0}, {10, 10, 10}}]] // FullSimplify
{{x -> Root[-27 + 54 #1 - 17 #1^2 - 58 #1^3 + 78 #1^4 - 40 #1^5 + 8 #1^6 &, 1],
y -> Root[-27 + 54 #1 - 17 #1^2 - 58 #1^3 + 78 #1^4 - 40 #1^5 + 8 #1^6 &, 1],
z -> Root[-27 + 54 #1 - 17 #1^2 - 58 #1^3 + 78 #1^4 - 40 #1^5 + 8 #1^6 &, 1]},
{x -> Root[-27 + 54 #1 - 17 #1^2 - 58 #1^3 + 78 #1^4 - 40 #1^5 + 8 #1^6 &, 2],
y -> Root[-27 + 54 #1 - 17 #1^2 - 58 #1^3 + 78 #1^4 - 40 #1^5 + 8 #1^6 &, 2],
z -> Root[-27 + 54 #1 - 17 #1^2 - 58 #1^3 + 78 #1^4 - 40 #1^5 + 8 #1^6 &, 2]}}

N[%]

{{x -> -0.814231, y -> -0.814231, z -> -0.814231},
{x -> 1.30996, y -> 1.30996, z -> 1.30996}}

Show the geometry:


Show[ParametricPlot3D[{1 + Cos[{kx, ky}.b1] + Cos[{kx, ky}.b2], 
Sin[{kx, ky}.b1] - Sin[{kx, ky}.b2],
M - 2 Sin[ϕ] (Sin[{kx, ky}.b1] + Sin[{kx, ky}.b2] +
Sin[{kx, ky}.b3])},
{kx, 1.8, 5.5}, {ky, -2.2, 2.2},
Mesh -> False, PlotStyle -> Opacity[1/2]],

Graphics3D[{Tube[Line[{{0, 0, 0}, {10, 10, 10}}]],
{Red, Sphere[{x, y, z}, 1/12] /. %}}]]

surface and intersection points with a line


Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Adding a thick curve to a regionplot

Suppose we have the following simple RegionPlot: f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}] Now I'm trying to change the curve defined by $y=g[x]$ into a thick black curve, while leaving all other boundaries in the plot unchanged. I've tried adding the region $y=g[x]$ and playing with the plotstyle, which didn't work, and I've tried BoundaryStyle, which changed all the boundaries in the plot. Now I'm kinda out of ideas... Any help would be appreciated! Answer With f[x_] := 1 - x^2 g[x_] := 1 - 0.5 x^2 You can use Epilog to add the thick line: RegionPlot[{y < f[x], f[x] < y < g[x], y > g[x]}, {x, 0, 2}, {y, 0, 2}, PlotPoints -> 50, Epilog -> (Plot[g[x], {x, 0, 2}, PlotStyle -> {Black, Thick}][[1]]), PlotStyle -> {Directive[Yellow, Opacity[0.4]], Directive[Pink, Opacity[0.4]],