Skip to main content

fitting - Implementation of smoothing splines function



I have some problems in writing a module for spline smoothing. Actually, I have been trying for about two weeks. My listing is here:


SplSmooth[data_, knots_, lambda_, degree_] := 
Module[{M, Knots, NKnots, NBasis, X, Dsq, a},
M = Length@data;
Knots = Flatten@{Table[1, {i, 1, degree}], knots,Table[M, {i,1,degree}]};
NKnots = Length@Knots;
NBasis = NKnots - degree - 1;
X = Table[
Evaluate @ BSplineBasis[{degree, Knots}, n, t] // N, {t, 1, M},
{n, 0, NBasis - 1}];

Dsq = Differences[X, 2];
a=Inverse[Transpose[X].X + lambda*Transpose[Dsq].Dsq // N].Transpose[X].data // N;
Return[X.a]
];

When I try to place a knot in every point in my data, numerical errors arise, such as:



Inverse::luc: Result for Inverse of badly conditioned matrix {{1.251,-0.1255,-0.251,0.0836667,0.0418333,0.,0.,0.,0.,0.,<<72>>},<<9>>,<<72>>} may contain significant numerical errors. >>



Obviously, the corresponding result is wrong (I can see it from the plot). It seems that the matrix to be inverted is ill-conditioned:



a = Inverse[Transpose[X].X + lambda*Transpose[Dsq].Dsq // N].Transpose[X].data // N;

but now comes the other problem. I use equidistant knots (let's say with 7 points distance) to overcome this problem. But then sometimes the algorithm works with:


Knots = Flatten @ {Table[1, {i, 1, degree}], knots, Table[M, {i, 1, degree}]};

and some other times works with


Knots = Flatten @ {Table[1, {i, 0, degree}], knots, Table[M, {i ,0, degree}]};

Now, I think that there is some kind of problem in BSplineBasis function.


Q: Can you spot the problem please? Or has anyone of you implemented a simillar function in the past with BSplineBasis function?





Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]