Skip to main content

performance tuning - Optimizing a simple calculus using a list of matrices - Repeated dot product between a vector and a list of matrices



I want to make the following operation :



$$ \begin{bmatrix} \dot q_1\\\dot q_2 \end{bmatrix} + \begin{bmatrix} \begin{bmatrix} q_1 & q_2 \end{bmatrix} \mathbf A_1 \begin{bmatrix} q_1\\ q_2 \end{bmatrix} \\ \begin{bmatrix} q_1 & q_2 \end{bmatrix} \mathbf A_2 \begin{bmatrix} q_1\\ q_2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \dot q_1\\\dot q_2 \end{bmatrix} + \begin{bmatrix} \begin{bmatrix} q_1 & q_2 \end{bmatrix} \begin{bmatrix} 0&1\\ 1&1 \end{bmatrix} \begin{bmatrix} q_1\\ q_2 \end{bmatrix} \\ \begin{bmatrix} q_1 & q_2 \end{bmatrix} \begin{bmatrix} -1&0\\ 0&0 \end{bmatrix} \begin{bmatrix} q_1\\ q_2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \dot q_1\\\dot q_2 \end{bmatrix} + \begin{bmatrix} {q_1}^2 + q_2(q_1+q_2)\\ -{q_1}^2 \end{bmatrix}$$


I also want to put the two $\mathbf A_1$ and $\mathbf A_2$ matrices inside a list of matrices A in mathematica.


So I started creating my list of matrices A and did the following :


A={{{0, 1}, {1, 1}},{{-1, 0}, {0, 0}}};
res={{q1, q2}.A[[1]].{q1, q2},{q1, q2}.A[[2]].{q1, q2}};
final={q1p,q2p}+res;

Now, my question : is there a way to optimize the calculation of res? The goal is to avoid calling A[[1]] and A[[2]] independently each time. The perspective is to extend the A list to a list of dimension $n \gt 2$ (something like this) :


$$ \begin{bmatrix} \dot q_1\\\dot q_2 \\ \vdots \\ \dot q_n \end{bmatrix} + \begin{bmatrix} \begin{bmatrix} q_1 & q_2 & \cdots & q_n\end{bmatrix} \mathbf A_1 \begin{bmatrix} q_1\\ q_2 \\ \vdots \\ \dot q_n \end{bmatrix} \\ \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \mathbf A_2 \begin{bmatrix} q_1\\ q_2 \\ \vdots \\ \dot q_n \end{bmatrix} \\ \vdots \\ \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \mathbf A_n \begin{bmatrix} q_1\\ q_2 \\ \vdots \\ q_n \end{bmatrix} \end{bmatrix}$$



Answer




Ok, so, thanks to Spawn1701D's comment here's the simplest way to proceed :


A={{{0, 1}, {1, 1}},{{-1, 0}, {0, 0}}};
res={q1,q2}.#.{q1,q2}&/@A;
final={q1p,q2p}+res;

To state it simple, Spawn1701D prescribes the usage of pure functions to make it extremely terse :



  • # function creates a slot between the two versions of the $\mathbf q$ vector

  • /@ is a shorthand of the Map function



Basically what this code does is : map the Dot operations to every element on the A list (which in this particular case is a list of matrices).


UPDATE


Another way to proceed (the simplest one in fact, thanks Michael E2) is to simply use the Dot product twice between the list A and vector q


q={q1,q2}
A={{{0, 1}, {1, 1}},{{-1, 0}, {0, 0}}};
res=A.q.q

Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...