Skip to main content

mathematical optimization - FindMinimum works only if you know the answer


I am processing SNe Ia data and using FindMinimum to try and extract two values: t1 and a0. The FindMinimum value works only if I supply values that are close to the answer. If I provide no starting values or arbitrary starting values (e.g. t1=1, a0=1), then the function doesn't converge. If I give it values close to the answer (e.g. t1=1*^18, a0=1*^-14), then I get an answer. Here's the code:


c = 2.99792*^5;
megaParsec = 3.08567758*^19;

alpha = 0.147;
beta = 3.13;
mag = -19.34;

chiSquared[t1_, a0_] :=
Sum[residual[i, t1, a0]^2/error[i]^2, {i, 1, Length[data]}]

error[i_] := (distance = observedDistance[i];
distanceModuli =
Log10[distance/megaParsec]*5 + 25; (data[[i, 6]]/distanceModuli)*

distance)

luminousDistance[z_, t1_, a0_] := -((a0*t1^2*z +
2*c*((-t1)*(1 + z) + Sqrt[t1^2*(1 + z)]))/(2 + z))

residual[i_, t1_, a0_] := (z = data[[i, 2]];
observedDistance[i] - luminousDistance[z, t1, a0])

observedDistance[i_] := (magnitude =
data[[i, 3]] + alpha*(data[[i, 4]] - 1) - beta*data[[i, 5]] - mag;

10^((magnitude - 25)/5)*megaParsec)

And here is the data:


data = {{"sn2004s", 0.01, 14.183, 0.973, 0.035, 0.213}, {"sn1999ac", 
0.01, 14.13, 0.987, 0.056, 0.177}, {"sn1997do", 0.011, 14.317,
0.983, 0.056, 0.204}, {"sn2006bh", 0.011, 14.347, 0.814, -0.045,
0.168}, {"sn2002dp", 0.011, 14.597, 0.973, 0.113,
0.203}, {"sn2005al", 0.012, 14.843, 0.871, -0.073,
0.179}, {"sn2001ep", 0.013, 14.904, 0.903, 0.088,
0.189}, {"sn1997e", 0.014, 15.118, 0.819, 0.036,

0.2}, {"sn2001fe", 0.015, 14.685, 1.077, -0.002,
0.194}, {"sn2005bo", 0.014, 15.646, 0.867, 0.236,
0.186}, {"sn2002ha", 0.014, 14.703, 0.867, -0.056,
0.202}, {"sn2006n", 0.015, 15.09, 0.787, -0.023,
0.196}, {"sn1999dq", 0.014, 14.409, 1.103, 0.075,
0.183}, {"sn1999aa", 0.016, 14.728, 1.12, -0.052,
0.167}, {"sn1992al", 0.014, 14.499, 0.959, -0.087,
0.187}, {"sn2001bt", 0.014, 15.317, 0.899, 0.18,
0.181}, {"sn2005el", 0.015, 14.842, 0.838, -0.08,
0.19}, {"sn1999dk", 0.014, 14.881, 0.991, 0.086,

0.198}, {"sn2001v", 0.016, 14.596, 1.111, 0.025,
0.176}, {"sn2005kc", 0.015, 15.502, 0.933, 0.176,
0.192}, {"sn1994s", 0.015, 14.801, 1.031, -0.037,
0.208}, {"sn2001cz", 0.016, 15.083, 1.007, 0.071,
0.19}, {"sn2001cn", 0.015, 15.306, 0.933, 0.145,
0.191}, {"sn2001bf", 0.015, 14.719, 1.1, 0, 0.215}, {"sn2004eo",
0.015, 15.104, 0.88, 0.058, 0.18}, {"sn2004ey", 0.016, 14.676,
1.001, -0.107, 0.201}, {"sn2001en", 0.015, 15.095, 0.877, 0.038,
0.309}, {"sn2006td", 0.016, 15.735, 0.841, 0.123,
0.208}, {"sn1996bv", 0.017, 15.353, 1.064, 0.162,

0.234}, {"sn2006ax", 0.017, 14.984, 1.001, -0.091,
0.174}, {"sn2001da", 0.017, 15.464, 0.778, 0.078,
0.412}, {"sn2000dk", 0.018, 15.361, 0.768, -0.001,
0.184}, {"sn1998v", 0.017, 15.105, 0.983, 0.004,
0.243}, {"sn1998ef", 0.018, 14.832, 0.892, -0.068,
0.203}, {"sn2007ci", 0.019, 15.909, 0.729, 0.066,
0.188}, {"sn1992bo", 0.019, 15.79, 0.771, -0.03,
0.182}, {"sn2002kf", 0.02, 15.664, 0.862, -0.032,
0.222}, {"sn2005ki", 0.02, 15.536, 0.844, -0.067,
0.171}, {"sn2003w", 0.021, 15.89, 0.993, 0.134,

0.178}, {"sn1992bc", 0.021, 15.145, 1.081, -0.086,
0.173}, {"sn2006ej", 0.02, 15.779, 0.853, 0.026,
0.204}, {"sn2007bc", 0.022, 15.912, 0.852, 0.011,
0.191}, {"sn2002jy", 0.022, 15.758, 1.109, -0.008,
0.2}, {"sn2008bf", 0.022, 15.739, 1.034, 0.013,
0.178}, {"sn2006bq", 0.022, 16.191, 0.848, 0.079,
0.191}, {"sn2006et", 0.022, 16.003, 1.11, 0.166,
0.215}, {"sn2006cp", 0.023, 16.015, 1.052, 0.099,
0.188}, {"sn2006ar", 0.023, 16.486, 0.903, 0.128,
0.198}, {"sn1995ak", 0.022, 15.982, 0.85, 0.011,

0.278}, {"sn2006mp", 0.023, 16.009, 1.092, 0.036,
0.188}, {"sn2005bg", 0.025, 15.833, 1.044, -0.003,
0.185}, {"sn2006ac", 0.023, 16.193, 0.895, 0.08,
0.174}, {"sn1994m", 0.025, 16.278, 0.83, 0.043,
0.208}, {"sn2000cn", 0.024, 16.554, 0.755, 0.115,
0.189}, {"sn2007f", 0.024, 15.914, 1.059, -0.02,
0.187}, {"sn2000ca", 0.023, 15.606, 1.062, -0.073,
0.194}, {"sn2007qe", 0.024, 16.074, 1.059, 0.067,
0.171}, {"sn2006sr", 0.024, 16.157, 0.852, 0.011,
0.195}, {"sn1993h", 0.024, 16.766, 0.726, 0.179,

0.193}, {"sn2002bf", 0.025, 16.358, 0.936, 0.169,
0.232}, {"sn2002he", 0.025, 16.271, 0.82, -0.012,
0.214}, {"sn1992ag", 0.025, 16.355, 0.95, 0.18,
0.231}, {"sn2005ms", 0.027, 16.18, 1.045, -0.01,
0.181}, {"sn1992p", 0.028, 16.097, 1.079, -0.063,
0.271}, {"sn2007cq", 0.025, 15.85, 0.938, 0.003,
0.198}, {"sn2005na", 0.027, 15.934, 0.95, -0.078,
0.183}, {"sn2004gs", 0.027, 17.146, 0.768, 0.167,
0.172}, {"sn1999gp", 0.027, 16.044, 1.182, 0.029,
0.186}, {"sn2007co", 0.027, 16.491, 0.964, 0.098,

0.186}, {"sn1998ab", 0.028, 16.089, 0.982, 0.066,
0.194}, {"sn2002de", 0.028, 16.699, 1.062, 0.139,
0.223}, {"sn2003u", 0.029, 16.521, 0.791, 0.003,
0.227}, {"sn2005eq", 0.029, 16.322, 1.159, 0.026,
0.184}, {"sn2001ba", 0.03, 16.244, 1.008, -0.095,
0.196}, {"sn1996c", 0.031, 16.654, 1.073, 0.087,
0.208}, {"sn2006qo", 0.03, 16.865, 1.048, 0.192,
0.18}, {"sn2003ch", 0.03, 16.725, 0.842, -0.001, 0.2}, {"sn1990o",
0.03, 16.267, 1.047, -0.018, 0.229}, {"sn1997dg", 0.031, 16.84,
0.941, -0.024, 0.215}, {"sn2006az", 0.031, 16.517, 0.858, -0.064,

0.168}, {"sn2004as", 0.033, 17.011, 1.049, 0.077,
0.2}, {"sn2007bd", 0.032, 16.614, 0.844, -0.021,
0.18}, {"sn1999cc", 0.032, 16.783, 0.812, 0.015,
0.174}, {"sn2006s", 0.033, 16.898, 1.112, 0.074,
0.172}, {"sn2006bt", 0.031, 16.971, 1.011, 0.13,
0.181}, {"sn2004l", 0.033, 17.385, 0.925, 0.192,
0.234}, {"sn2005iq", 0.034, 16.76, 0.878, -0.085,
0.17}, {"sn2003iv", 0.035, 17.03, 0.741, -0.04,
0.25}, {"sn2006gr", 0.034, 17.009, 1.103, 0.1,
0.184}, {"sn2005eu", 0.035, 16.521, 1.101, -0.027,

0.213}, {"sn2002hd", 0.036, 16.867, 0.858, 0.081,
0.377}, {"sn1992bg", 0.035, 16.749, 0.956, -0.037,
0.281}, {"sn1996bl", 0.035, 16.677, 0.979, 0.006,
0.206}, {"sn2000cf", 0.037, 17.05, 0.916, -0.023,
0.193}, {"sn2006mo", 0.037, 17.486, 0.759, 0.065,
0.207}, {"sn2001eh", 0.037, 16.667, 1.185, -0.004,
0.198}, {"sn1999aw", 0.039, 16.791, 1.234, -0.032,
0.182}, {"sn2002hu", 0.038, 16.69, 1.045, -0.058,
0.183}, {"sn2003fa", 0.039, 16.763, 1.152, -0.01,
0.182}, {"sn2001az", 0.04, 16.986, 1.108, -0.049,

0.259}, {"sn2005lz", 0.041, 17.674, 0.844, 0.093,
0.201}, {"sn1992bl", 0.042, 17.345, 0.815, -0.035,
0.24}, {"sn1992bh", 0.042, 17.649, 0.99, 0.065,
0.215}, {"sn2004gu", 0.047, 17.439, 1.141, 0.101,
0.178}, {"sn2005hc", 0.045, 17.302, 1.078, -0.006,
0.18}, {"sn1993ag", 0.049, 17.865, 0.884, 0.085,
0.241}, {"sn1995ac", 0.049, 17.091, 1.085, -0.012,
0.184}, {"sn1990af", 0.05, 17.796, 0.741, -0.006,
0.198}, {"sn1993o", 0.053, 17.656, 0.906, -0.073,
0.196}, {"sn1999ao", 0.055, 17.906, 0.95, -0.017,

0.212}, {"sn1998dx", 0.054, 17.546, 0.844, -0.088,
0.24}, {"sn2006ob", 0.059, 18.302, 0.741, 0.022,
0.187}, {"sn2006oa", 0.058, 17.955, 1.131, 0.023,
0.196}, {"SDSS3901", 0.063, 18.015, 1.117, 0.051,
0.18}, {"sn1992bs", 0.063, 18.317, 0.966, -0.018,
0.237}, {"sn2006an", 0.065, 18.195, 1.061, 0.016,
0.222}, {"sn2007ae", 0.063, 17.832, 1.198, 0.002,
0.234}, {"SDSS10028", 0.065, 18.373, 0.891, 0.054,
0.2}, {"SDSS6057", 0.067, 18.641, 0.944, 0.129,
0.206}, {"sn2006al", 0.069, 18.485, 0.809, -0.063,

0.248}, {"sn1993b", 0.07, 18.497, 0.914, 0.057,
0.273}, {"sn2006on", 0.068, 18.494, 1.038, 0.104,
0.31}, {"sn1992ae", 0.075, 18.448, 0.944, -0.027,
0.266}, {"sn2005ir", 0.075, 18.4, 1.043, 0.014,
0.17}, {"sn1999bp", 0.078, 18.422, 1.065, -0.037,
0.198}, {"sn1992bp", 0.079, 18.335, 0.877, -0.075,
0.212}, {"sn2005ag", 0.08, 18.44, 1.029, -0.014,
0.179}, {"SDSS1241", 0.087, 19.103, 0.929, 0.072,
0.189}, {"SDSS3592", 0.087, 18.751, 0.975, -0.04,
0.178}, {"SDSS6773", 0.09, 18.663, 0.979, -0.011,

0.207}, {"SDSS2102", 0.095, 18.634, 1.133, -0.094,
0.217}, {"SDSS10434", 0.104, 19.185, 1.01, -0.053,
0.224}, {"SDSS3256", 0.108, 19.495, 0.942, -0.029,
0.222}, {"SDSS7147", 0.11, 19.516, 0.796, -0.034,
0.195}, {"SDSS8719", 0.116, 19.392, 0.992, -0.059,
0.199}, {"SDSS5395", 0.117, 19.459, 1.11, 0.002,
0.188}, {"SDSS2561", 0.118, 19.813, 0.993, 0.086,
0.193}, {"SDSS1371", 0.119, 19.073, 1.072, -0.076,
0.187}, {"SDSS5549", 0.121, 19.654, 1.02, 0.033,
0.182}, {"SDSS2916", 0.124, 19.937, 0.875, 0.066,

0.248}, {"06D2fb", 0.124, 19.772, 0.964, -0.004,
0.181}, {"SDSS6406", 0.125, 19.616, 1, 0.026, 0.188}, {"SDSS2992",
0.127, 20.034, 0.889, 0.127, 0.21}, {"SDSS744", 0.128, 19.793,
1.149, 0.08, 0.25}, {"SDSS5751", 0.13, 20.136, 1.068, 0.191,
0.179}, {"SDSS1032", 0.13, 20.326, 0.717, 0.088,
0.219}, {"SDSS2635", 0.143, 19.83, 1.092, -0.015,
0.202}, {"SDSS1794", 0.143, 20.058, 1.136, 0.018,
0.244}, {"SDSS8921", 0.145, 19.961, 1.104, 0.007,
0.231}, {"SDSS5103", 0.146, 20.377, 0.963, 0.055,
0.191}, {"SDSS11300", 0.147, 20.309, 0.862, 0.11,

0.243}, {"SDSS10106", 0.147, 20.948, 0.99, 0.2,
0.233}, {"SDSS2308", 0.148, 19.587, 1.069, -0.164,
0.189}, {"SDSS2031", 0.153, 19.703, 1.049, -0.091,
0.195}, {"SDSS5550", 0.156, 19.844, 1.202, -0.055,
0.19}, {"SDSS2689", 0.162, 20.254, 1.165, 0.095,
0.202}, {"SDSS3087", 0.165, 20.266, 1.056, 0.025,
0.196}, {"05D3ne", 0.169, 20.251, 0.809, -0.147,
0.218}, {"SDSS5916", 0.172, 20.439, 0.922, 0.014,
0.206}, {"SDSS3080", 0.174, 20.236, 0.999, -0.038,
0.195}, {"SDSS5350", 0.175, 20.323, 0.913, -0.057,

0.248}, {"SDSS5635", 0.179, 20.923, 1.011, 0.002,
0.233}, {"SDSS2372", 0.181, 20.58, 1.032, 0.045,
0.21}, {"SDSS6936", 0.181, 20.575, 1.003, -0.007,
0.208}, {"SDSS1580", 0.183, 20.291, 1.099, -0.014,
0.215}, {"05D2ah", 0.184, 20.765, 0.991, 0.019,
0.184}, {"SDSS6422", 0.184, 20.274, 1.08, -0.097,
0.193}, {"SDSS8213", 0.185, 21.133, 0.923, 0.179,
0.226}, {"SDSS5994", 0.187, 20.476, 1.074, -0.041,
0.218}, {"SDSS6304", 0.19, 20.952, 0.927, 0.095,
0.207}, {"SDSS762", 0.191, 20.657, 1.102, 0.009,

0.211}, {"SDSS2440", 0.193, 20.653, 1.051, -0.062,
0.212}, {"SDSS7335", 0.198, 21.265, 0.781, 0.067,
0.243}, {"SDSS6780", 0.202, 20.947, 0.789, -0.004,
0.246}, {"SDSS7243", 0.204, 20.789, 1.079, 0.002,
0.237}, {"SDSS3331", 0.206, 21.089, 0.95, 0.076,
0.225}, {"04D1dc", 0.211, 21.084, 0.856, 0.023,
0.191}, {"SDSS7847", 0.212, 21.225, 1.017, 0.155,
0.224}, {"SDSS6933", 0.213, 20.832, 0.995, 0.002,
0.202}, {"SDSS8495", 0.214, 20.811, 1.098, -0.001,
0.246}, {"SDSS1316", 0.217, 20.907, 1.058, -0.073,

0.374}, {"SDSS9467", 0.218, 21.057, 0.83, -0.118,
0.269}, {"05D3kx", 0.219, 20.867, 1.069, -0.016,
0.179}, {"SDSS7512", 0.219, 21.104, 1.055, 0.027,
0.233}, {"SDSS5533", 0.22, 21.173, 0.976, 0.046,
0.21}, {"SDSS3452", 0.23, 20.799, 1.092, -0.068,
0.211}, {"SDSS10449", 0.244, 20.995, 1.109, 0.039,
0.285}, {"SDSS3377", 0.245, 20.791, 1.12, -0.06,
0.219}, {"05D3mq", 0.246, 21.521, 0.912, 0.034,
0.204}, {"SDSS3451", 0.25, 20.958, 1.055, -0.038,
0.22}, {"06D3gn", 0.25, 21.892, 0.949, 0.16, 0.186}, {"SDSS3199",

0.251, 21.539, 1.164, 0.03, 0.224}, {"SDSS5717", 0.252, 21.355,
1.175, -0.012, 0.211}, {"SDSS5736", 0.253, 21.421, 0.949, 0.011,
0.211}, {"SDSS9032", 0.254, 21.345, 1.075, 0.041,
0.271}, {"SDSS9457", 0.257, 21.453, 0.978, 0.022,
0.302}, {"SDSS1112", 0.258, 21.563, 0.918, 0.022,
0.302}, {"SDSS8046", 0.259, 21.633, 1.049, 0.077,
0.249}, {"SDSS6108", 0.259, 21.537, 1.065, 0.063,
0.246}, {"SDSS3241", 0.259, 21.01, 1.057, -0.168,
0.251}, {"SDSS1253", 0.262, 21.23, 0.871, -0.09,
0.253}, {"SDSS2017", 0.262, 21.286, 1.148, -0.085,

0.26}, {"04D3ez", 0.263, 21.697, 0.891, 0.089, 0.184}, {"05D1hk",
0.263, 21.184, 1.168, -0.006, 0.192}, {"SDSS2422", 0.265, 21.144,
1.112, -0.156, 0.215}, {"SDSS2943", 0.265, 21.372, 1.055, 0.007,
0.24}, {"SDSS6315", 0.267, 20.919, 0.971, -0.166,
0.233}, {"06D3fp", 0.268, 21.748, 0.999, 0.104, 0.18}, {"03D4cj",
0.27, 21.052, 1.124, -0.063, 0.184}, {"SDSS6192", 0.272, 21.698,
0.826, -0.018, 0.268}, {"SDSS5957", 0.28, 21.453, 0.983, -0.089,
0.245}, {"06D3dt", 0.282, 22.168, 0.986, 0.117, 0.192}, {"03D4ag",
0.285, 21.277, 1.111, -0.043, 0.19}, {"SDSS2165", 0.288, 21.604,
1.063, -0.096, 0.245}, {"SDSS2789", 0.29, 21.576, 0.901, -0.077,

0.27}, {"03D3ba", 0.291, 21.984, 1.084, 0.146,
0.238}, {"SDSS6249", 0.294, 21.821, 1.086, 0.064,
0.256}, {"SDSS10550", 0.3, 22.02, 1.162, 0.105, 0.372}, {"06D4dh",
0.303, 21.449, 1.052, -0.126, 0.185}, {"SDSS11864", 0.303,
22.299, 1.015, 0.07, 0.432}, {"SDSS5966", 0.31, 21.798, 1.02,
0.002, 0.315}, {"SDSS6699", 0.311, 21.796, 0.872, -0.126,
0.277}, {"SDSS5844", 0.311, 21.571, 1.015, -0.099,
0.254}, {"SDSS6649", 0.314, 21.598, 1.09, -0.057,
0.251}, {"SDSS7475", 0.322, 21.535, 1.025, -0.123,
0.251}, {"05D2ab", 0.323, 22.001, 0.987, -0.013,

0.191}, {"SDSS6924", 0.328, 21.633, 1.076, -0.041,
0.265}, {"03D1fc", 0.332, 21.866, 1.048, 0.016, 0.194}, {"04D3kr",
0.337, 21.957, 1.127, -0.004, 0.184}, {"SDSS2533", 0.34, 21.79,
1.191, -0.04, 0.278}, {"04D3nh", 0.34, 22.142, 1.059, 0.009,
0.184}, {"03D1bp", 0.347, 22.421, 0.88, 0.002, 0.192}, {"04D2mc",
0.348, 22.58, 0.845, 0.142, 0.205}, {"05D2ie", 0.348, 22.249,
0.988, -0.046, 0.198}, {"SDSS9207", 0.35, 22.062, 1.126, 0.022,
0.322}, {"05D2hc", 0.35, 22.693, 0.931, 0.057, 0.194}, {"05D2mp",
0.354, 22.417, 1.138, 0.058, 0.208}, {"03D3bl", 0.355, 22.951,
1.002, 0.241, 0.211}, {"04D2fs", 0.357, 22.437, 1.01, 0.081,

0.191}, {"04D3fk", 0.358, 22.537, 0.96, 0.11, 0.184}, {"04D1hd",
0.369, 22.166, 1.071, -0.06, 0.179}, {"04D2cf", 0.369, 22.491,
0.882, 0.015, 0.265}, {"05D3jr", 0.37, 22.663, 0.902, 0.096,
0.189}, {"03D3ay", 0.371, 22.293, 1.054, -0.018,
0.234}, {"05D4bm", 0.372, 22.22, 1.02, -0.041, 0.183}, {"05D4fo",
0.373, 22.463, 0.924, -0.022, 0.183}, {"05D4cw", 0.375, 22.145,
0.911, -0.12, 0.187}, {"SDSS7779", 0.381, 21.943, 1.124, -0.049,
0.25}, {"SDSS5737", 0.393, 22.439, 1.27, 0.144,
0.339}, {"SDSS8707", 0.395, 22.272, 1.11, -0.088,
0.26}, {"05D4ff", 0.402, 22.615, 0.932, 0.028, 0.192}, {"06D3ed",

0.404, 22.615, 0.963, -0.036, 0.182}, {"05D4dt", 0.407, 22.808,
0.891, -0.023, 0.186}, {"06D4cq", 0.411, 22.562, 1.04, -0.005,
0.184}, {"04D2fp", 0.415, 22.559, 1.034, -0.012,
0.197}, {"05D2dw", 0.417, 22.488, 1.125, 0.021, 0.198}, {"05D3cf",
0.419, 22.965, 0.97, 0.045, 0.203}, {"04D4gg", 0.424, 22.753,
1.131, 0.124, 0.207}, {"05D2cb", 0.427, 23.407, 1.1, 0.193,
0.206}, {"04D1rh", 0.435, 22.582, 1.085, -0.015,
0.203}, {"06D4co", 0.437, 22.521, 0.96, -0.027, 0.183}, {"06D2gb",
0.442, 23.008, 0.829, 0.03, 0.23}, {"06D3df", 0.442, 22.685,
1.122, 0.021, 0.195}, {"03D3aw", 0.449, 22.654, 1.066, -0.053,

0.241}, {"04D2gb", 0.45, 22.916, 0.831, 0.042, 0.21}, {"04D3gt",
0.451, 23.259, 0.976, 0.223, 0.192}, {"03D3cd", 0.461, 22.593,
1.208, 0.012, 0.293}, {"05D3lc", 0.461, 22.982, 0.913, -0.021,
0.187}, {"03D4au", 0.468, 23.817, 1.048, 0.158, 0.239}, {"05D3mx",
0.47, 23.043, 0.832, -0.057, 0.202}, {"04D4jr", 0.47, 22.642,
1.16, -0.026, 0.195}, {"04D3df", 0.47, 23.521, 0.787, 0.108,
0.199}, {"04D4ju", 0.472, 23.771, 1.045, 0.184, 0.214}, {"05D2bv",
0.474, 22.719, 0.989, -0.096, 0.197}, {"05D2ac", 0.479, 22.677,
1.133, -0.012, 0.191}, {"05D3dd", 0.48, 22.941, 0.985, -0.015,
0.203}, {"05D1ix", 0.49, 22.879, 1.054, -0.034, 0.198}, {"03D1ax",

0.496, 22.992, 0.925, -0.062, 0.196}, {"05D4af", 0.499, 23.108,
1.01, -0.013, 0.222}, {"06D2bk", 0.499, 23.273, 1.054, 0.036,
0.234}, {"03D1au", 0.504, 23.012, 1.137, 0.017, 0.203}, {"05D4av",
0.509, 23.558, 1.095, 0.185, 0.204}, {"05D2dy", 0.51, 22.913,
1.099, -0.1, 0.211}, {"04D2mj", 0.513, 23.783, 1.154, 0.171,
0.216}, {"04D1pg", 0.515, 23.57, 1.092, 0.119, 0.218}, {"05D3ci",
0.515, 23.564, 1.166, 0.16, 0.278}, {"04D4in", 0.516, 22.902,
1.169, -0.034, 0.201}, {"06D3el", 0.519, 22.913, 1.08, -0.082,
0.196}, {"04D2gc", 0.522, 23.327, 1.133, 0.037, 0.219}, {"06D2ca",
0.531, 23.301, 1.099, 0.06, 0.249}, {"06D2cc", 0.532, 23.468,

0.944, 0.089, 0.256}, {"05D2eb", 0.534, 23.006, 1.113, -0.036,
0.233}, {"05D4ek", 0.536, 23.303, 1.059, 0.081, 0.21}, {"05D4be",
0.537, 22.916, 1.1, -0.114, 0.199}, {"04D4bq", 0.55, 23.347,
1.095, 0.134, 0.23}, {"04D3hn", 0.552, 23.503, 0.935, 0.096,
0.21}, {"06D2ck", 0.552, 23.447, 1.05, -0.002, 0.249}, {"06D4bo",
0.552, 23.231, 1.098, -0.028, 0.227}, {"05D1ee", 0.559, 23.556,
0.953, 0.023, 0.222}, {"04D1hx", 0.56, 23.715, 1.042, 0.143,
0.215}, {"05D1kl", 0.56, 24.154, 1.075, 0.164, 0.246}, {"05D1cc",
0.563, 23.496, 0.981, -0.005, 0.211}, {"05D1dn", 0.566, 23.317,
1.129, 0.018, 0.222}, {"03D4gl", 0.571, 23.314, 1.238, 0.039,

0.831}, {"05D2dt", 0.574, 23.656, 1.024, 0.045, 0.249}, {"06D3et",
0.576, 23.512, 0.861, -0.039, 0.213}, {"05D3jq", 0.579, 23.322,
1.161, 0.035, 0.209}, {"05D3gp", 0.58, 23.521, 0.946, -0.054,
0.286}, {"03D4gf", 0.58, 23.336, 1.095, 0.01, 0.236}, {"05D1dx",
0.58, 23.304, 1.078, -0.027, 0.205}, {"03D1aw", 0.582, 23.584,
1.098, 0.001, 0.235}, {"04D1jg", 0.584, 23.272, 1.028, -0.079,
0.219}, {"04D1kj", 0.585, 23.345, 1.034, -0.052,
0.211}, {"05D4ej", 0.585, 23.746, 1.034, 0.02, 0.222}, {"04D1sa",
0.585, 23.559, 0.94, -0.064, 0.237}, {"05D1hm", 0.587, 24.102,
1.126, 0.155, 0.244}, {"05D4bf", 0.589, 23.627, 1.029, 0.018,

0.235}, {"04D2mh", 0.59, 23.403, 1.163, 0.041, 0.215}, {"04D1oh",
0.59, 23.388, 1.01, -0.048, 0.227}, {"03D4gg", 0.592, 23.413,
1.098, 0.046, 0.264}, {"05D3lr", 0.6, 23.854, 1.02, 0.096,
0.251}, {"05D4ef", 0.605, 23.832, 0.839, -0.054,
0.225}, {"05D2he", 0.608, 23.953, 1.044, 0.073, 0.244}, {"03D4dy",
0.61, 23.268, 1.127, -0.06, 0.231}, {"04D3do", 0.61, 23.577,
0.906, -0.097, 0.213}, {"03D1dt", 0.612, 23.3, 1.048, -0.054,
0.273}, {"04D4an", 0.613, 24.046, 0.987, 0.025, 0.27}, {"05D1ck",
0.617, 24.074, 1.007, 0.111, 0.231}, {"04D2an", 0.62, 23.597,
0.991, -0.019, 0.295}, {"04D3co", 0.62, 23.757, 0.936, 0.019,

0.245}, {"03D4dh", 0.627, 23.39, 1.13, -0.045, 0.225}, {"04D4fx",
0.629, 23.501, 1.115, 0.01, 0.23}, {"05D2ci", 0.63, 23.612, 0.901,
0.045, 0.263}, {"05D1cb", 0.632, 23.715, 0.967, -0.001,
0.222}, {"03D4at", 0.634, 23.733, 1.019, -0.008,
0.261}, {"04D1pu", 0.639, 24.024, 0.843, 0.094, 0.291}, {"05D2ec",
0.64, 23.672, 0.994, -0.063, 0.248}, {"05D4ag", 0.64, 23.895,
1.055, 0.068, 0.287}, {"05D3ax", 0.643, 23.62, 1.071, -0.034,
0.28}, {"04D3cy", 0.643, 23.8, 0.978, -0.011, 0.257}, {"05D3lb",
0.647, 23.896, 1.04, 0.035, 0.224}, {"05D3kt", 0.648, 23.965,
0.979, 0.085, 0.23}, {"04D1sk", 0.663, 24.058, 1.028, 0.1,

0.251}, {"05D3hs", 0.664, 23.501, 1.045, -0.141,
0.234}, {"05D3mh", 0.67, 24.106, 1.084, 0.053, 0.272}, {"03D1co",
0.679, 24.088, 1.084, -0.019, 0.266}, {"05D2bt", 0.68, 23.521,
1.067, -0.113, 0.239}, {"06D3cc", 0.683, 24.067, 1.082, 0.006,
0.312}, {"04D4ic", 0.687, 24.121, 0.9, -0.01, 0.276}, {"06D3em",
0.69, 24.377, 1.006, 0.149, 0.259}, {"05D1ke", 0.69, 23.611,
1.035, -0.077, 0.23}, {"03D4cz", 0.695, 24.045, 0.818, -0.071,
0.292}, {"05D2ck", 0.698, 24.474, 0.733, -0.015,
0.277}, {"04D4ib", 0.699, 23.595, 1.101, -0.093,
0.233}, {"04D2iu", 0.7, 24.246, 0.806, 0.021, 0.288}, {"06D4ba",

0.7, 23.761, 1.065, -0.081, 0.28}, {"05D2le", 0.7, 23.961,
1.054, -0.012, 0.247}, {"05D4cq", 0.701, 23.73, 1.077, -0.058,
0.24}, {"05D4bj", 0.701, 24.103, 1.012, 0.059, 0.249}, {"04D1si",
0.702, 23.867, 0.994, -0.003, 0.244}, {"04D4hu", 0.703, 23.92,
1.005, -0.078, 0.241}, {"05D3gv", 0.715, 24.001, 0.911, -0.043,
0.254}, {"05D3jh", 0.718, 23.753, 0.927, -0.096, 0.23}, {"06D3gh",
0.72, 23.926, 1.034, -0.021, 0.27}, {"04D1aj", 0.721, 23.904,
1.03, -0.004, 0.266}, {"05D4ev", 0.722, 24.259, 0.896, -0.014,
0.259}, {"06D3do", 0.725, 23.898, 1.096, -0.044,
0.281}, {"06D3bz", 0.727, 23.959, 0.923, -0.057,

0.268}, {"04D2gp", 0.732, 24.219, 0.849, -0.091, 0.29}, {"06D4bw",
0.732, 23.904, 1.066, 0.005, 0.25}, {"05D2fq", 0.733, 23.997,
1.084, -0.033, 0.249}, {"05D2ct", 0.734, 24.385, 1.042, 0.093,
0.293}, {"04D1pp", 0.735, 23.998, 0.865, -0.064,
0.236}, {"05D3jk", 0.736, 23.717, 1.082, -0.079,
0.227}, {"05D1eo", 0.737, 24.316, 0.854, -0.038,
0.255}, {"04D2ja", 0.74, 24.129, 1.04, -0.131, 0.281}, {"04D3fq",
0.742, 24.116, 0.956, -0.03, 0.264}, {"04D2kr", 0.744, 23.865,
1.057, -0.02, 0.247}, {"05D3jb", 0.745, 23.939, 1.102, -0.025,
0.235}, {"04D3ks", 0.75, 23.855, 1.075, -0.03, 0.257}, {"04D4im",

0.751, 23.852, 1.148, 0.043, 0.245}, {"04D3oe", 0.756, 24.06,
0.908, -0.161, 0.258}, {"05D2nt", 0.757, 24.099, 1.156, -0.006,
0.247}, {"05D3mn", 0.76, 24.043, 0.987, -0.021, 0.244}, {"06D3gx",
0.76, 23.885, 1.043, -0.089, 0.296}, {"05D4cn", 0.763, 24.102,
1.111, 0.015, 0.243}, {"05D1if", 0.763, 24.059, 1.019, -0.035,
0.243}, {"05D3hh", 0.766, 24.319, 1.07, 0.018, 0.279}, {"04D1qd",
0.767, 24.228, 1.007, 0.012, 0.245}, {"04D1de", 0.768, 24.144,
1.101, -0.079, 0.241}, {"04D4id", 0.769, 24.212, 1.074, -0.1,
0.276}, {"04D1pc", 0.77, 24.553, 0.97, 0.067, 0.256}, {"05D4bi",
0.775, 24.051, 1.098, -0.094, 0.268}, {"04D1jd", 0.778, 24.425,

1.01, 0.051, 0.258}, {"05D4cs", 0.79, 23.967, 1.135, -0.061,
0.236}, {"03D4fd", 0.791, 24.232, 1.072, -0.024,
0.288}, {"04D1ks", 0.798, 24.145, 1.079, 0.076, 0.251}, {"05D3dh",
0.8, 24.203, 1.009, 0.078, 0.26}, {"03D1fq", 0.8, 24.512,
0.87, -0.045, 0.272}, {"05D3cx", 0.805, 23.913, 1.051, -0.11,
0.266}, {"05D3ha", 0.805, 24.388, 0.972, 0.09, 0.287}, {"05D4gw",
0.808, 24.481, 1.025, 0.047, 0.288}, {"05D4dy", 0.81, 24.617,
0.956, -0.083, 0.275}, {"04D3ny", 0.81, 24.262, 1.024, 0.011,
0.31}, {"04D4dm", 0.811, 24.402, 0.981, 0.021, 0.267}, {"04D3mk",
0.813, 24.294, 0.954, -0.104, 0.254}, {"04D3nc", 0.817, 24.293,

1.139, -0.022, 0.28}, {"06D2ce", 0.82, 24.215, 1.219, 0.018,
0.333}, {"04D3lu", 0.822, 24.377, 0.934, -0.084, 0.25}, {"05D1cl",
0.83, 24.353, 1.242, -0.018, 0.269}, {"04D3cp", 0.83, 24.111,
1.049, -0.18, 0.256}, {"04D2al", 0.836, 24.319, 0.933, -0.04,
0.372}, {"Elvis", 0.839, 24.397, 0.985, 0, 0.263}, {"05D4fg",
0.839, 24.195, 1.024, -0.102, 0.254}, {"06D2ga", 0.84, 24.29,
1.176, -0.001, 0.356}, {"05D1az", 0.842, 24.254, 1.184, 0.015,
0.269}, {"05D4hn", 0.842, 24.196, 1.122, 0.048, 0.319}, {"04D1hy",
0.85, 24.307, 1.11, -0.026, 0.254}, {"06D4ce", 0.85, 24.205,
1.168, -0.059, 0.303}, {"05D3kp", 0.85, 24.139, 1.131, -0.082,

0.243}, {"05D4dw", 0.855, 24.438, 1.046, 0.008, 0.278}, {"04D1ff",
0.86, 24.243, 1.08, 0.046, 0.257}, {"05D1iz", 0.86, 24.392,
1.095, -0.082, 0.336}, {"05D1er", 0.86, 24.618, 1.042, 0.062,
0.29}, {"03D1bk", 0.865, 24.345, 1.018, -0.167, 0.263}, {"05D1em",
0.866, 24.283, 1.017, -0.1, 0.26}, {"04D4ii", 0.866, 24.399,
1.165, 0.039, 0.284}, {"03D1ew", 0.868, 24.359, 1.036, -0.036,
0.284}, {"05D2nn", 0.87, 24.395, 0.879, -0.147, 0.321}, {"04D4bk",
0.88, 24.327, 1.181, -0.061, 0.28}, {"05D3cq", 0.89, 24.22,
0.96, -0.151, 0.278}, {"05D2by", 0.891, 24.568, 1.132, -0.008,
0.29}, {"03D4di", 0.899, 24.314, 1.146, -0.043, 0.29}, {"05D3ht",

0.901, 24.417, 1.118, -0.095, 0.282}, {"04D3gx", 0.91, 24.666,
0.94, -0.11, 0.293}, {"04D1ow", 0.915, 24.366, 1.004, -0.124,
0.268}, {"05D2bw", 0.92, 24.4, 0.972, -0.111, 0.319}, {"05D2ay",
0.92, 24.672, 0.983, 0.014, 0.349}, {"05D2ob", 0.924, 24.822,
1.103, 0.033, 0.318}, {"03D4cy", 0.927, 24.705, 1.103, -0.032,
0.346}, {"06D2cd", 0.93, 24.876, 1.166, 0.051, 0.49}, {"04D4jy",
0.93, 24.765, 1.022, -0.076, 0.345}, {"04D4ih", 0.934, 24.43,
1.03, -0.166, 0.276}, {"Vilas", 0.935, 24.473, 1.036, -0.028,
0.272}, {"04D4hf", 0.936, 24.811, 1.081, 0.028, 0.35}, {"05D3la",
0.936, 24.494, 0.967, -0.083, 0.267}, {"03D4cx", 0.949, 24.464,

0.947, 0.019, 0.331}, {"04D1pd", 0.95, 24.734, 1.039, 0.022,
0.298}, {"04D3ml", 0.95, 24.56, 1.117, -0.077, 0.29}, {"04D3nr",
0.96, 24.587, 0.99, 0.005, 0.299}, {"05D3km", 0.96, 24.773,
1.022, -0.123, 0.28}, {"04D4jw", 0.961, 24.848, 0.892, -0.173,
0.365}, {"Patuxent", 0.97, 25.026, 0.962, -0.129, 0.356}, {"Ombo",
0.975, 24.891, 1.208, 0.018, 0.271}, {"05D2my", 0.981, 24.688,
1.13, -0.026, 0.305}, {"04D3lp", 0.983, 25.023, 0.816, -0.044,
0.378}, {"04D1rx", 0.985, 24.77, 1.081, -0.062, 0.307}, {"04D1iv",
0.998, 24.624, 1.152, -0.074, 0.285}, {"06D4cl", 1, 24.578,
1.13, -0.065, 0.296}, {"04D3dd", 1.002, 25.234, 1.112, -0.016,

0.412}, {"Strolger", 1.01, 24.99, 1.195, -0.077, 0.433}, {"Eagle",
1.02, 24.968, 1.017, -0.061, 0.289}, {"Ferguson", 1.02, 24.867,
1.023, 0.007, 0.329}, {"04D4dw", 1.031, 24.546, 1.127, -0.08,
0.326}, {"06D3en", 1.06, 24.756, 0.858, -0.139, 0.358}, {"Gabi",
1.12, 25.121, 1.048, -0.037, 0.278}, {"Greenberg", 1.14, 24.727,
1.09, -0.055, 0.325}, {"Lancaster", 1.23, 26.054, 0.969, 0.073,
0.335}, {"Torngasek", 1.265, 25.757, 1.04, 0.028,
0.354}, {"Aphrodite", 1.3, 25.691, 1.058, 0.013, 0.284}, {"Borg",
1.34, 25.87, 1.192, 0.09, 0.389}, {"Sasquatch", 1.39, 25.956,
1.193, 0.112, 0.535}, {"Primo", 1.54992, 25.7576,

0.168369, -0.197134, 0.6329682}, {" GND13Sto ", 1.8, 26.1369,
0.527158, -0.0156538, 0.9455797}, {"SN UDS10Wil", 1.914,
26.2, -0.5, -0.071, 0.85}, {"GND12Col", 2.25, 26.791, 1.1517,
0.0421647, 1.381078}};

And here is the function that selects the minimum value:


FindMinimum[{chiSquared[t1, a0]}, {{t1, 1*^16}, {a0, 1}}]

This will return:


{111076., {t1 -> 6.65636*10^18, a0 -> 3.87928*10^-14}}


Which is pretty close, but if you remove the initializers, or set t1 to 1, then it's unable to find a minimum.


FindMinimum[{chiSquared[t1, a0]}, {t1, a0}]

{1.49713*10^7, {t1 -> 72.0749, a0 -> -2.21105*10^7}}

How do I get the FindMinimum function to work if I don't know the answer?



Answer



The root of the problem is the magnitude calculation which involves a Log10 operation, not the disparity between the power of the variables. The Log10 operation creates discontinuities in the solution space which the Mathematica solvers were not able to navigate.


The solution: instead of framing the problem in terms of the magnitude, I converted all the calculations and input values to kilometers. This made the solution space continuous and FindMinimum was able to find a solution that was reasonably close using very rough guesses for the initial conditions (t0 = 1*^14, a0 = 1). Then I used NMinimize and the original Log10 based calculations with a set of tight ranges around the result of the FindMinimum solution to find the absolute minimum in terms of magnitude and the magnitude errors.



Many thanks to Jack LaVigne for the effort he put into the scaled parameters solution but I think the real issue is that Mathematica's FindMinimum doesn't handle imaginary numbers well. The package from Original Labs, as it turns out, has a similar problem when the formula involves a Log10 operation: it can't navigate around the discontinuities.


Update:


Here is the code for the version that calculates the minimums using a continuous solution space by working in km instead of distance moduli (a notation similar to magnitude):


c = 299792.; 
megaParsec = 3.08567758*^19;
alpha = 0.147;
beta = 3.13;
mag = -19.34;
chiSquared[t1_, a0_] := Sum[residual[i, t1, a0]^2/error[i]^2, {i, 1, Length[data]}]
error[i_] := observedDistance[i, data[[i,6]]]

luminousDistance[z_, t1_, a0_] := -((a0*t1^2*z + 2*c*((-t1)*(1 + z) + Sqrt[t1^2*(1 + z)]))/(2 + z))
residual[i_, t1_, a0_] := observedDistance[i, 0.] - luminousDistance[data[[i,2]], t1, a0]
observedDistance[i_, error_] := (magnitude = data[[i,3]] + alpha*(data[[i,4]] - 1) - beta*data[[i,5]] - mag + error; 10^((magnitude - 25)/5)*megaParsec)
FindMinimum[{chiSquared[t1, a0]}, {{t1, 1*^16}, {a0, 1}}]

This will put you in the neighborhood using very rough guesses. The output is:


{3.00375, {t1 -> 6.76415*10^18, a0 -> 3.82816*10^-14}}

Which is close (like all the solutions that attempt to change the scale), but not the minimum. The chi-square on this solution is 0.74. Now that we're in the neighborhood, I can switch back to the Log10 version (the errors from Astronomy papers are always quoted in distance moduli, so it's the only valid test for Chi-Square). Here's the version using distance moduli:


c = 299792.; 

megaParsec = 3.08567758*^19;
alpha = 0.147;
beta = 3.13;
mag = -19.34;
chiSquared[t1_, a0_] := Sum[residual[i, t1, a0]^2/data[[i,6]]^2, {i, 1, Length[data]}]
luminousDistance[z_, t1_, a0_] := (distance = -((a0*t1^2*z + 2*c*((-t1)*(1 + z) + Sqrt[t1^2*(1 + z)]))/(2 + z)); 5*Log10[distance/megaParsec] + 25)
residual[i_, t1_, a0_] := observedDistance[i] - luminousDistance[data[[i,2]], t1, a0]
observedDistance[i_] := data[[i,3]] + alpha*(data[[i,4]] - 1) - beta*data[[i,5]] - mag
NMinimize[{chiSquared[x, y],
1*^17 < x < 1*^19 && 1*^-15 < y < 1*^-13}, {x, y}]


This version truly finds the minimum. The output is:


{342.207, {x -> 6.64112*10^18, y -> 3.87624*10^-14}}

And produces a chi-square of 0.72. So the solution is to first convert the formula to give a continuous solution space. Then the FindMinimum algorithms can navigate into the neighborhood of the minimum. Once you have the neighborhood, you can use NMinimize to find the absolute minimum.


Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...