Skip to main content

mathematical optimization - FindMinimum works only if you know the answer


I am processing SNe Ia data and using FindMinimum to try and extract two values: t1 and a0. The FindMinimum value works only if I supply values that are close to the answer. If I provide no starting values or arbitrary starting values (e.g. t1=1, a0=1), then the function doesn't converge. If I give it values close to the answer (e.g. t1=1*^18, a0=1*^-14), then I get an answer. Here's the code:


c = 2.99792*^5;
megaParsec = 3.08567758*^19;

alpha = 0.147;
beta = 3.13;
mag = -19.34;

chiSquared[t1_, a0_] :=
Sum[residual[i, t1, a0]^2/error[i]^2, {i, 1, Length[data]}]

error[i_] := (distance = observedDistance[i];
distanceModuli =
Log10[distance/megaParsec]*5 + 25; (data[[i, 6]]/distanceModuli)*

distance)

luminousDistance[z_, t1_, a0_] := -((a0*t1^2*z +
2*c*((-t1)*(1 + z) + Sqrt[t1^2*(1 + z)]))/(2 + z))

residual[i_, t1_, a0_] := (z = data[[i, 2]];
observedDistance[i] - luminousDistance[z, t1, a0])

observedDistance[i_] := (magnitude =
data[[i, 3]] + alpha*(data[[i, 4]] - 1) - beta*data[[i, 5]] - mag;

10^((magnitude - 25)/5)*megaParsec)

And here is the data:


data = {{"sn2004s", 0.01, 14.183, 0.973, 0.035, 0.213}, {"sn1999ac", 
0.01, 14.13, 0.987, 0.056, 0.177}, {"sn1997do", 0.011, 14.317,
0.983, 0.056, 0.204}, {"sn2006bh", 0.011, 14.347, 0.814, -0.045,
0.168}, {"sn2002dp", 0.011, 14.597, 0.973, 0.113,
0.203}, {"sn2005al", 0.012, 14.843, 0.871, -0.073,
0.179}, {"sn2001ep", 0.013, 14.904, 0.903, 0.088,
0.189}, {"sn1997e", 0.014, 15.118, 0.819, 0.036,

0.2}, {"sn2001fe", 0.015, 14.685, 1.077, -0.002,
0.194}, {"sn2005bo", 0.014, 15.646, 0.867, 0.236,
0.186}, {"sn2002ha", 0.014, 14.703, 0.867, -0.056,
0.202}, {"sn2006n", 0.015, 15.09, 0.787, -0.023,
0.196}, {"sn1999dq", 0.014, 14.409, 1.103, 0.075,
0.183}, {"sn1999aa", 0.016, 14.728, 1.12, -0.052,
0.167}, {"sn1992al", 0.014, 14.499, 0.959, -0.087,
0.187}, {"sn2001bt", 0.014, 15.317, 0.899, 0.18,
0.181}, {"sn2005el", 0.015, 14.842, 0.838, -0.08,
0.19}, {"sn1999dk", 0.014, 14.881, 0.991, 0.086,

0.198}, {"sn2001v", 0.016, 14.596, 1.111, 0.025,
0.176}, {"sn2005kc", 0.015, 15.502, 0.933, 0.176,
0.192}, {"sn1994s", 0.015, 14.801, 1.031, -0.037,
0.208}, {"sn2001cz", 0.016, 15.083, 1.007, 0.071,
0.19}, {"sn2001cn", 0.015, 15.306, 0.933, 0.145,
0.191}, {"sn2001bf", 0.015, 14.719, 1.1, 0, 0.215}, {"sn2004eo",
0.015, 15.104, 0.88, 0.058, 0.18}, {"sn2004ey", 0.016, 14.676,
1.001, -0.107, 0.201}, {"sn2001en", 0.015, 15.095, 0.877, 0.038,
0.309}, {"sn2006td", 0.016, 15.735, 0.841, 0.123,
0.208}, {"sn1996bv", 0.017, 15.353, 1.064, 0.162,

0.234}, {"sn2006ax", 0.017, 14.984, 1.001, -0.091,
0.174}, {"sn2001da", 0.017, 15.464, 0.778, 0.078,
0.412}, {"sn2000dk", 0.018, 15.361, 0.768, -0.001,
0.184}, {"sn1998v", 0.017, 15.105, 0.983, 0.004,
0.243}, {"sn1998ef", 0.018, 14.832, 0.892, -0.068,
0.203}, {"sn2007ci", 0.019, 15.909, 0.729, 0.066,
0.188}, {"sn1992bo", 0.019, 15.79, 0.771, -0.03,
0.182}, {"sn2002kf", 0.02, 15.664, 0.862, -0.032,
0.222}, {"sn2005ki", 0.02, 15.536, 0.844, -0.067,
0.171}, {"sn2003w", 0.021, 15.89, 0.993, 0.134,

0.178}, {"sn1992bc", 0.021, 15.145, 1.081, -0.086,
0.173}, {"sn2006ej", 0.02, 15.779, 0.853, 0.026,
0.204}, {"sn2007bc", 0.022, 15.912, 0.852, 0.011,
0.191}, {"sn2002jy", 0.022, 15.758, 1.109, -0.008,
0.2}, {"sn2008bf", 0.022, 15.739, 1.034, 0.013,
0.178}, {"sn2006bq", 0.022, 16.191, 0.848, 0.079,
0.191}, {"sn2006et", 0.022, 16.003, 1.11, 0.166,
0.215}, {"sn2006cp", 0.023, 16.015, 1.052, 0.099,
0.188}, {"sn2006ar", 0.023, 16.486, 0.903, 0.128,
0.198}, {"sn1995ak", 0.022, 15.982, 0.85, 0.011,

0.278}, {"sn2006mp", 0.023, 16.009, 1.092, 0.036,
0.188}, {"sn2005bg", 0.025, 15.833, 1.044, -0.003,
0.185}, {"sn2006ac", 0.023, 16.193, 0.895, 0.08,
0.174}, {"sn1994m", 0.025, 16.278, 0.83, 0.043,
0.208}, {"sn2000cn", 0.024, 16.554, 0.755, 0.115,
0.189}, {"sn2007f", 0.024, 15.914, 1.059, -0.02,
0.187}, {"sn2000ca", 0.023, 15.606, 1.062, -0.073,
0.194}, {"sn2007qe", 0.024, 16.074, 1.059, 0.067,
0.171}, {"sn2006sr", 0.024, 16.157, 0.852, 0.011,
0.195}, {"sn1993h", 0.024, 16.766, 0.726, 0.179,

0.193}, {"sn2002bf", 0.025, 16.358, 0.936, 0.169,
0.232}, {"sn2002he", 0.025, 16.271, 0.82, -0.012,
0.214}, {"sn1992ag", 0.025, 16.355, 0.95, 0.18,
0.231}, {"sn2005ms", 0.027, 16.18, 1.045, -0.01,
0.181}, {"sn1992p", 0.028, 16.097, 1.079, -0.063,
0.271}, {"sn2007cq", 0.025, 15.85, 0.938, 0.003,
0.198}, {"sn2005na", 0.027, 15.934, 0.95, -0.078,
0.183}, {"sn2004gs", 0.027, 17.146, 0.768, 0.167,
0.172}, {"sn1999gp", 0.027, 16.044, 1.182, 0.029,
0.186}, {"sn2007co", 0.027, 16.491, 0.964, 0.098,

0.186}, {"sn1998ab", 0.028, 16.089, 0.982, 0.066,
0.194}, {"sn2002de", 0.028, 16.699, 1.062, 0.139,
0.223}, {"sn2003u", 0.029, 16.521, 0.791, 0.003,
0.227}, {"sn2005eq", 0.029, 16.322, 1.159, 0.026,
0.184}, {"sn2001ba", 0.03, 16.244, 1.008, -0.095,
0.196}, {"sn1996c", 0.031, 16.654, 1.073, 0.087,
0.208}, {"sn2006qo", 0.03, 16.865, 1.048, 0.192,
0.18}, {"sn2003ch", 0.03, 16.725, 0.842, -0.001, 0.2}, {"sn1990o",
0.03, 16.267, 1.047, -0.018, 0.229}, {"sn1997dg", 0.031, 16.84,
0.941, -0.024, 0.215}, {"sn2006az", 0.031, 16.517, 0.858, -0.064,

0.168}, {"sn2004as", 0.033, 17.011, 1.049, 0.077,
0.2}, {"sn2007bd", 0.032, 16.614, 0.844, -0.021,
0.18}, {"sn1999cc", 0.032, 16.783, 0.812, 0.015,
0.174}, {"sn2006s", 0.033, 16.898, 1.112, 0.074,
0.172}, {"sn2006bt", 0.031, 16.971, 1.011, 0.13,
0.181}, {"sn2004l", 0.033, 17.385, 0.925, 0.192,
0.234}, {"sn2005iq", 0.034, 16.76, 0.878, -0.085,
0.17}, {"sn2003iv", 0.035, 17.03, 0.741, -0.04,
0.25}, {"sn2006gr", 0.034, 17.009, 1.103, 0.1,
0.184}, {"sn2005eu", 0.035, 16.521, 1.101, -0.027,

0.213}, {"sn2002hd", 0.036, 16.867, 0.858, 0.081,
0.377}, {"sn1992bg", 0.035, 16.749, 0.956, -0.037,
0.281}, {"sn1996bl", 0.035, 16.677, 0.979, 0.006,
0.206}, {"sn2000cf", 0.037, 17.05, 0.916, -0.023,
0.193}, {"sn2006mo", 0.037, 17.486, 0.759, 0.065,
0.207}, {"sn2001eh", 0.037, 16.667, 1.185, -0.004,
0.198}, {"sn1999aw", 0.039, 16.791, 1.234, -0.032,
0.182}, {"sn2002hu", 0.038, 16.69, 1.045, -0.058,
0.183}, {"sn2003fa", 0.039, 16.763, 1.152, -0.01,
0.182}, {"sn2001az", 0.04, 16.986, 1.108, -0.049,

0.259}, {"sn2005lz", 0.041, 17.674, 0.844, 0.093,
0.201}, {"sn1992bl", 0.042, 17.345, 0.815, -0.035,
0.24}, {"sn1992bh", 0.042, 17.649, 0.99, 0.065,
0.215}, {"sn2004gu", 0.047, 17.439, 1.141, 0.101,
0.178}, {"sn2005hc", 0.045, 17.302, 1.078, -0.006,
0.18}, {"sn1993ag", 0.049, 17.865, 0.884, 0.085,
0.241}, {"sn1995ac", 0.049, 17.091, 1.085, -0.012,
0.184}, {"sn1990af", 0.05, 17.796, 0.741, -0.006,
0.198}, {"sn1993o", 0.053, 17.656, 0.906, -0.073,
0.196}, {"sn1999ao", 0.055, 17.906, 0.95, -0.017,

0.212}, {"sn1998dx", 0.054, 17.546, 0.844, -0.088,
0.24}, {"sn2006ob", 0.059, 18.302, 0.741, 0.022,
0.187}, {"sn2006oa", 0.058, 17.955, 1.131, 0.023,
0.196}, {"SDSS3901", 0.063, 18.015, 1.117, 0.051,
0.18}, {"sn1992bs", 0.063, 18.317, 0.966, -0.018,
0.237}, {"sn2006an", 0.065, 18.195, 1.061, 0.016,
0.222}, {"sn2007ae", 0.063, 17.832, 1.198, 0.002,
0.234}, {"SDSS10028", 0.065, 18.373, 0.891, 0.054,
0.2}, {"SDSS6057", 0.067, 18.641, 0.944, 0.129,
0.206}, {"sn2006al", 0.069, 18.485, 0.809, -0.063,

0.248}, {"sn1993b", 0.07, 18.497, 0.914, 0.057,
0.273}, {"sn2006on", 0.068, 18.494, 1.038, 0.104,
0.31}, {"sn1992ae", 0.075, 18.448, 0.944, -0.027,
0.266}, {"sn2005ir", 0.075, 18.4, 1.043, 0.014,
0.17}, {"sn1999bp", 0.078, 18.422, 1.065, -0.037,
0.198}, {"sn1992bp", 0.079, 18.335, 0.877, -0.075,
0.212}, {"sn2005ag", 0.08, 18.44, 1.029, -0.014,
0.179}, {"SDSS1241", 0.087, 19.103, 0.929, 0.072,
0.189}, {"SDSS3592", 0.087, 18.751, 0.975, -0.04,
0.178}, {"SDSS6773", 0.09, 18.663, 0.979, -0.011,

0.207}, {"SDSS2102", 0.095, 18.634, 1.133, -0.094,
0.217}, {"SDSS10434", 0.104, 19.185, 1.01, -0.053,
0.224}, {"SDSS3256", 0.108, 19.495, 0.942, -0.029,
0.222}, {"SDSS7147", 0.11, 19.516, 0.796, -0.034,
0.195}, {"SDSS8719", 0.116, 19.392, 0.992, -0.059,
0.199}, {"SDSS5395", 0.117, 19.459, 1.11, 0.002,
0.188}, {"SDSS2561", 0.118, 19.813, 0.993, 0.086,
0.193}, {"SDSS1371", 0.119, 19.073, 1.072, -0.076,
0.187}, {"SDSS5549", 0.121, 19.654, 1.02, 0.033,
0.182}, {"SDSS2916", 0.124, 19.937, 0.875, 0.066,

0.248}, {"06D2fb", 0.124, 19.772, 0.964, -0.004,
0.181}, {"SDSS6406", 0.125, 19.616, 1, 0.026, 0.188}, {"SDSS2992",
0.127, 20.034, 0.889, 0.127, 0.21}, {"SDSS744", 0.128, 19.793,
1.149, 0.08, 0.25}, {"SDSS5751", 0.13, 20.136, 1.068, 0.191,
0.179}, {"SDSS1032", 0.13, 20.326, 0.717, 0.088,
0.219}, {"SDSS2635", 0.143, 19.83, 1.092, -0.015,
0.202}, {"SDSS1794", 0.143, 20.058, 1.136, 0.018,
0.244}, {"SDSS8921", 0.145, 19.961, 1.104, 0.007,
0.231}, {"SDSS5103", 0.146, 20.377, 0.963, 0.055,
0.191}, {"SDSS11300", 0.147, 20.309, 0.862, 0.11,

0.243}, {"SDSS10106", 0.147, 20.948, 0.99, 0.2,
0.233}, {"SDSS2308", 0.148, 19.587, 1.069, -0.164,
0.189}, {"SDSS2031", 0.153, 19.703, 1.049, -0.091,
0.195}, {"SDSS5550", 0.156, 19.844, 1.202, -0.055,
0.19}, {"SDSS2689", 0.162, 20.254, 1.165, 0.095,
0.202}, {"SDSS3087", 0.165, 20.266, 1.056, 0.025,
0.196}, {"05D3ne", 0.169, 20.251, 0.809, -0.147,
0.218}, {"SDSS5916", 0.172, 20.439, 0.922, 0.014,
0.206}, {"SDSS3080", 0.174, 20.236, 0.999, -0.038,
0.195}, {"SDSS5350", 0.175, 20.323, 0.913, -0.057,

0.248}, {"SDSS5635", 0.179, 20.923, 1.011, 0.002,
0.233}, {"SDSS2372", 0.181, 20.58, 1.032, 0.045,
0.21}, {"SDSS6936", 0.181, 20.575, 1.003, -0.007,
0.208}, {"SDSS1580", 0.183, 20.291, 1.099, -0.014,
0.215}, {"05D2ah", 0.184, 20.765, 0.991, 0.019,
0.184}, {"SDSS6422", 0.184, 20.274, 1.08, -0.097,
0.193}, {"SDSS8213", 0.185, 21.133, 0.923, 0.179,
0.226}, {"SDSS5994", 0.187, 20.476, 1.074, -0.041,
0.218}, {"SDSS6304", 0.19, 20.952, 0.927, 0.095,
0.207}, {"SDSS762", 0.191, 20.657, 1.102, 0.009,

0.211}, {"SDSS2440", 0.193, 20.653, 1.051, -0.062,
0.212}, {"SDSS7335", 0.198, 21.265, 0.781, 0.067,
0.243}, {"SDSS6780", 0.202, 20.947, 0.789, -0.004,
0.246}, {"SDSS7243", 0.204, 20.789, 1.079, 0.002,
0.237}, {"SDSS3331", 0.206, 21.089, 0.95, 0.076,
0.225}, {"04D1dc", 0.211, 21.084, 0.856, 0.023,
0.191}, {"SDSS7847", 0.212, 21.225, 1.017, 0.155,
0.224}, {"SDSS6933", 0.213, 20.832, 0.995, 0.002,
0.202}, {"SDSS8495", 0.214, 20.811, 1.098, -0.001,
0.246}, {"SDSS1316", 0.217, 20.907, 1.058, -0.073,

0.374}, {"SDSS9467", 0.218, 21.057, 0.83, -0.118,
0.269}, {"05D3kx", 0.219, 20.867, 1.069, -0.016,
0.179}, {"SDSS7512", 0.219, 21.104, 1.055, 0.027,
0.233}, {"SDSS5533", 0.22, 21.173, 0.976, 0.046,
0.21}, {"SDSS3452", 0.23, 20.799, 1.092, -0.068,
0.211}, {"SDSS10449", 0.244, 20.995, 1.109, 0.039,
0.285}, {"SDSS3377", 0.245, 20.791, 1.12, -0.06,
0.219}, {"05D3mq", 0.246, 21.521, 0.912, 0.034,
0.204}, {"SDSS3451", 0.25, 20.958, 1.055, -0.038,
0.22}, {"06D3gn", 0.25, 21.892, 0.949, 0.16, 0.186}, {"SDSS3199",

0.251, 21.539, 1.164, 0.03, 0.224}, {"SDSS5717", 0.252, 21.355,
1.175, -0.012, 0.211}, {"SDSS5736", 0.253, 21.421, 0.949, 0.011,
0.211}, {"SDSS9032", 0.254, 21.345, 1.075, 0.041,
0.271}, {"SDSS9457", 0.257, 21.453, 0.978, 0.022,
0.302}, {"SDSS1112", 0.258, 21.563, 0.918, 0.022,
0.302}, {"SDSS8046", 0.259, 21.633, 1.049, 0.077,
0.249}, {"SDSS6108", 0.259, 21.537, 1.065, 0.063,
0.246}, {"SDSS3241", 0.259, 21.01, 1.057, -0.168,
0.251}, {"SDSS1253", 0.262, 21.23, 0.871, -0.09,
0.253}, {"SDSS2017", 0.262, 21.286, 1.148, -0.085,

0.26}, {"04D3ez", 0.263, 21.697, 0.891, 0.089, 0.184}, {"05D1hk",
0.263, 21.184, 1.168, -0.006, 0.192}, {"SDSS2422", 0.265, 21.144,
1.112, -0.156, 0.215}, {"SDSS2943", 0.265, 21.372, 1.055, 0.007,
0.24}, {"SDSS6315", 0.267, 20.919, 0.971, -0.166,
0.233}, {"06D3fp", 0.268, 21.748, 0.999, 0.104, 0.18}, {"03D4cj",
0.27, 21.052, 1.124, -0.063, 0.184}, {"SDSS6192", 0.272, 21.698,
0.826, -0.018, 0.268}, {"SDSS5957", 0.28, 21.453, 0.983, -0.089,
0.245}, {"06D3dt", 0.282, 22.168, 0.986, 0.117, 0.192}, {"03D4ag",
0.285, 21.277, 1.111, -0.043, 0.19}, {"SDSS2165", 0.288, 21.604,
1.063, -0.096, 0.245}, {"SDSS2789", 0.29, 21.576, 0.901, -0.077,

0.27}, {"03D3ba", 0.291, 21.984, 1.084, 0.146,
0.238}, {"SDSS6249", 0.294, 21.821, 1.086, 0.064,
0.256}, {"SDSS10550", 0.3, 22.02, 1.162, 0.105, 0.372}, {"06D4dh",
0.303, 21.449, 1.052, -0.126, 0.185}, {"SDSS11864", 0.303,
22.299, 1.015, 0.07, 0.432}, {"SDSS5966", 0.31, 21.798, 1.02,
0.002, 0.315}, {"SDSS6699", 0.311, 21.796, 0.872, -0.126,
0.277}, {"SDSS5844", 0.311, 21.571, 1.015, -0.099,
0.254}, {"SDSS6649", 0.314, 21.598, 1.09, -0.057,
0.251}, {"SDSS7475", 0.322, 21.535, 1.025, -0.123,
0.251}, {"05D2ab", 0.323, 22.001, 0.987, -0.013,

0.191}, {"SDSS6924", 0.328, 21.633, 1.076, -0.041,
0.265}, {"03D1fc", 0.332, 21.866, 1.048, 0.016, 0.194}, {"04D3kr",
0.337, 21.957, 1.127, -0.004, 0.184}, {"SDSS2533", 0.34, 21.79,
1.191, -0.04, 0.278}, {"04D3nh", 0.34, 22.142, 1.059, 0.009,
0.184}, {"03D1bp", 0.347, 22.421, 0.88, 0.002, 0.192}, {"04D2mc",
0.348, 22.58, 0.845, 0.142, 0.205}, {"05D2ie", 0.348, 22.249,
0.988, -0.046, 0.198}, {"SDSS9207", 0.35, 22.062, 1.126, 0.022,
0.322}, {"05D2hc", 0.35, 22.693, 0.931, 0.057, 0.194}, {"05D2mp",
0.354, 22.417, 1.138, 0.058, 0.208}, {"03D3bl", 0.355, 22.951,
1.002, 0.241, 0.211}, {"04D2fs", 0.357, 22.437, 1.01, 0.081,

0.191}, {"04D3fk", 0.358, 22.537, 0.96, 0.11, 0.184}, {"04D1hd",
0.369, 22.166, 1.071, -0.06, 0.179}, {"04D2cf", 0.369, 22.491,
0.882, 0.015, 0.265}, {"05D3jr", 0.37, 22.663, 0.902, 0.096,
0.189}, {"03D3ay", 0.371, 22.293, 1.054, -0.018,
0.234}, {"05D4bm", 0.372, 22.22, 1.02, -0.041, 0.183}, {"05D4fo",
0.373, 22.463, 0.924, -0.022, 0.183}, {"05D4cw", 0.375, 22.145,
0.911, -0.12, 0.187}, {"SDSS7779", 0.381, 21.943, 1.124, -0.049,
0.25}, {"SDSS5737", 0.393, 22.439, 1.27, 0.144,
0.339}, {"SDSS8707", 0.395, 22.272, 1.11, -0.088,
0.26}, {"05D4ff", 0.402, 22.615, 0.932, 0.028, 0.192}, {"06D3ed",

0.404, 22.615, 0.963, -0.036, 0.182}, {"05D4dt", 0.407, 22.808,
0.891, -0.023, 0.186}, {"06D4cq", 0.411, 22.562, 1.04, -0.005,
0.184}, {"04D2fp", 0.415, 22.559, 1.034, -0.012,
0.197}, {"05D2dw", 0.417, 22.488, 1.125, 0.021, 0.198}, {"05D3cf",
0.419, 22.965, 0.97, 0.045, 0.203}, {"04D4gg", 0.424, 22.753,
1.131, 0.124, 0.207}, {"05D2cb", 0.427, 23.407, 1.1, 0.193,
0.206}, {"04D1rh", 0.435, 22.582, 1.085, -0.015,
0.203}, {"06D4co", 0.437, 22.521, 0.96, -0.027, 0.183}, {"06D2gb",
0.442, 23.008, 0.829, 0.03, 0.23}, {"06D3df", 0.442, 22.685,
1.122, 0.021, 0.195}, {"03D3aw", 0.449, 22.654, 1.066, -0.053,

0.241}, {"04D2gb", 0.45, 22.916, 0.831, 0.042, 0.21}, {"04D3gt",
0.451, 23.259, 0.976, 0.223, 0.192}, {"03D3cd", 0.461, 22.593,
1.208, 0.012, 0.293}, {"05D3lc", 0.461, 22.982, 0.913, -0.021,
0.187}, {"03D4au", 0.468, 23.817, 1.048, 0.158, 0.239}, {"05D3mx",
0.47, 23.043, 0.832, -0.057, 0.202}, {"04D4jr", 0.47, 22.642,
1.16, -0.026, 0.195}, {"04D3df", 0.47, 23.521, 0.787, 0.108,
0.199}, {"04D4ju", 0.472, 23.771, 1.045, 0.184, 0.214}, {"05D2bv",
0.474, 22.719, 0.989, -0.096, 0.197}, {"05D2ac", 0.479, 22.677,
1.133, -0.012, 0.191}, {"05D3dd", 0.48, 22.941, 0.985, -0.015,
0.203}, {"05D1ix", 0.49, 22.879, 1.054, -0.034, 0.198}, {"03D1ax",

0.496, 22.992, 0.925, -0.062, 0.196}, {"05D4af", 0.499, 23.108,
1.01, -0.013, 0.222}, {"06D2bk", 0.499, 23.273, 1.054, 0.036,
0.234}, {"03D1au", 0.504, 23.012, 1.137, 0.017, 0.203}, {"05D4av",
0.509, 23.558, 1.095, 0.185, 0.204}, {"05D2dy", 0.51, 22.913,
1.099, -0.1, 0.211}, {"04D2mj", 0.513, 23.783, 1.154, 0.171,
0.216}, {"04D1pg", 0.515, 23.57, 1.092, 0.119, 0.218}, {"05D3ci",
0.515, 23.564, 1.166, 0.16, 0.278}, {"04D4in", 0.516, 22.902,
1.169, -0.034, 0.201}, {"06D3el", 0.519, 22.913, 1.08, -0.082,
0.196}, {"04D2gc", 0.522, 23.327, 1.133, 0.037, 0.219}, {"06D2ca",
0.531, 23.301, 1.099, 0.06, 0.249}, {"06D2cc", 0.532, 23.468,

0.944, 0.089, 0.256}, {"05D2eb", 0.534, 23.006, 1.113, -0.036,
0.233}, {"05D4ek", 0.536, 23.303, 1.059, 0.081, 0.21}, {"05D4be",
0.537, 22.916, 1.1, -0.114, 0.199}, {"04D4bq", 0.55, 23.347,
1.095, 0.134, 0.23}, {"04D3hn", 0.552, 23.503, 0.935, 0.096,
0.21}, {"06D2ck", 0.552, 23.447, 1.05, -0.002, 0.249}, {"06D4bo",
0.552, 23.231, 1.098, -0.028, 0.227}, {"05D1ee", 0.559, 23.556,
0.953, 0.023, 0.222}, {"04D1hx", 0.56, 23.715, 1.042, 0.143,
0.215}, {"05D1kl", 0.56, 24.154, 1.075, 0.164, 0.246}, {"05D1cc",
0.563, 23.496, 0.981, -0.005, 0.211}, {"05D1dn", 0.566, 23.317,
1.129, 0.018, 0.222}, {"03D4gl", 0.571, 23.314, 1.238, 0.039,

0.831}, {"05D2dt", 0.574, 23.656, 1.024, 0.045, 0.249}, {"06D3et",
0.576, 23.512, 0.861, -0.039, 0.213}, {"05D3jq", 0.579, 23.322,
1.161, 0.035, 0.209}, {"05D3gp", 0.58, 23.521, 0.946, -0.054,
0.286}, {"03D4gf", 0.58, 23.336, 1.095, 0.01, 0.236}, {"05D1dx",
0.58, 23.304, 1.078, -0.027, 0.205}, {"03D1aw", 0.582, 23.584,
1.098, 0.001, 0.235}, {"04D1jg", 0.584, 23.272, 1.028, -0.079,
0.219}, {"04D1kj", 0.585, 23.345, 1.034, -0.052,
0.211}, {"05D4ej", 0.585, 23.746, 1.034, 0.02, 0.222}, {"04D1sa",
0.585, 23.559, 0.94, -0.064, 0.237}, {"05D1hm", 0.587, 24.102,
1.126, 0.155, 0.244}, {"05D4bf", 0.589, 23.627, 1.029, 0.018,

0.235}, {"04D2mh", 0.59, 23.403, 1.163, 0.041, 0.215}, {"04D1oh",
0.59, 23.388, 1.01, -0.048, 0.227}, {"03D4gg", 0.592, 23.413,
1.098, 0.046, 0.264}, {"05D3lr", 0.6, 23.854, 1.02, 0.096,
0.251}, {"05D4ef", 0.605, 23.832, 0.839, -0.054,
0.225}, {"05D2he", 0.608, 23.953, 1.044, 0.073, 0.244}, {"03D4dy",
0.61, 23.268, 1.127, -0.06, 0.231}, {"04D3do", 0.61, 23.577,
0.906, -0.097, 0.213}, {"03D1dt", 0.612, 23.3, 1.048, -0.054,
0.273}, {"04D4an", 0.613, 24.046, 0.987, 0.025, 0.27}, {"05D1ck",
0.617, 24.074, 1.007, 0.111, 0.231}, {"04D2an", 0.62, 23.597,
0.991, -0.019, 0.295}, {"04D3co", 0.62, 23.757, 0.936, 0.019,

0.245}, {"03D4dh", 0.627, 23.39, 1.13, -0.045, 0.225}, {"04D4fx",
0.629, 23.501, 1.115, 0.01, 0.23}, {"05D2ci", 0.63, 23.612, 0.901,
0.045, 0.263}, {"05D1cb", 0.632, 23.715, 0.967, -0.001,
0.222}, {"03D4at", 0.634, 23.733, 1.019, -0.008,
0.261}, {"04D1pu", 0.639, 24.024, 0.843, 0.094, 0.291}, {"05D2ec",
0.64, 23.672, 0.994, -0.063, 0.248}, {"05D4ag", 0.64, 23.895,
1.055, 0.068, 0.287}, {"05D3ax", 0.643, 23.62, 1.071, -0.034,
0.28}, {"04D3cy", 0.643, 23.8, 0.978, -0.011, 0.257}, {"05D3lb",
0.647, 23.896, 1.04, 0.035, 0.224}, {"05D3kt", 0.648, 23.965,
0.979, 0.085, 0.23}, {"04D1sk", 0.663, 24.058, 1.028, 0.1,

0.251}, {"05D3hs", 0.664, 23.501, 1.045, -0.141,
0.234}, {"05D3mh", 0.67, 24.106, 1.084, 0.053, 0.272}, {"03D1co",
0.679, 24.088, 1.084, -0.019, 0.266}, {"05D2bt", 0.68, 23.521,
1.067, -0.113, 0.239}, {"06D3cc", 0.683, 24.067, 1.082, 0.006,
0.312}, {"04D4ic", 0.687, 24.121, 0.9, -0.01, 0.276}, {"06D3em",
0.69, 24.377, 1.006, 0.149, 0.259}, {"05D1ke", 0.69, 23.611,
1.035, -0.077, 0.23}, {"03D4cz", 0.695, 24.045, 0.818, -0.071,
0.292}, {"05D2ck", 0.698, 24.474, 0.733, -0.015,
0.277}, {"04D4ib", 0.699, 23.595, 1.101, -0.093,
0.233}, {"04D2iu", 0.7, 24.246, 0.806, 0.021, 0.288}, {"06D4ba",

0.7, 23.761, 1.065, -0.081, 0.28}, {"05D2le", 0.7, 23.961,
1.054, -0.012, 0.247}, {"05D4cq", 0.701, 23.73, 1.077, -0.058,
0.24}, {"05D4bj", 0.701, 24.103, 1.012, 0.059, 0.249}, {"04D1si",
0.702, 23.867, 0.994, -0.003, 0.244}, {"04D4hu", 0.703, 23.92,
1.005, -0.078, 0.241}, {"05D3gv", 0.715, 24.001, 0.911, -0.043,
0.254}, {"05D3jh", 0.718, 23.753, 0.927, -0.096, 0.23}, {"06D3gh",
0.72, 23.926, 1.034, -0.021, 0.27}, {"04D1aj", 0.721, 23.904,
1.03, -0.004, 0.266}, {"05D4ev", 0.722, 24.259, 0.896, -0.014,
0.259}, {"06D3do", 0.725, 23.898, 1.096, -0.044,
0.281}, {"06D3bz", 0.727, 23.959, 0.923, -0.057,

0.268}, {"04D2gp", 0.732, 24.219, 0.849, -0.091, 0.29}, {"06D4bw",
0.732, 23.904, 1.066, 0.005, 0.25}, {"05D2fq", 0.733, 23.997,
1.084, -0.033, 0.249}, {"05D2ct", 0.734, 24.385, 1.042, 0.093,
0.293}, {"04D1pp", 0.735, 23.998, 0.865, -0.064,
0.236}, {"05D3jk", 0.736, 23.717, 1.082, -0.079,
0.227}, {"05D1eo", 0.737, 24.316, 0.854, -0.038,
0.255}, {"04D2ja", 0.74, 24.129, 1.04, -0.131, 0.281}, {"04D3fq",
0.742, 24.116, 0.956, -0.03, 0.264}, {"04D2kr", 0.744, 23.865,
1.057, -0.02, 0.247}, {"05D3jb", 0.745, 23.939, 1.102, -0.025,
0.235}, {"04D3ks", 0.75, 23.855, 1.075, -0.03, 0.257}, {"04D4im",

0.751, 23.852, 1.148, 0.043, 0.245}, {"04D3oe", 0.756, 24.06,
0.908, -0.161, 0.258}, {"05D2nt", 0.757, 24.099, 1.156, -0.006,
0.247}, {"05D3mn", 0.76, 24.043, 0.987, -0.021, 0.244}, {"06D3gx",
0.76, 23.885, 1.043, -0.089, 0.296}, {"05D4cn", 0.763, 24.102,
1.111, 0.015, 0.243}, {"05D1if", 0.763, 24.059, 1.019, -0.035,
0.243}, {"05D3hh", 0.766, 24.319, 1.07, 0.018, 0.279}, {"04D1qd",
0.767, 24.228, 1.007, 0.012, 0.245}, {"04D1de", 0.768, 24.144,
1.101, -0.079, 0.241}, {"04D4id", 0.769, 24.212, 1.074, -0.1,
0.276}, {"04D1pc", 0.77, 24.553, 0.97, 0.067, 0.256}, {"05D4bi",
0.775, 24.051, 1.098, -0.094, 0.268}, {"04D1jd", 0.778, 24.425,

1.01, 0.051, 0.258}, {"05D4cs", 0.79, 23.967, 1.135, -0.061,
0.236}, {"03D4fd", 0.791, 24.232, 1.072, -0.024,
0.288}, {"04D1ks", 0.798, 24.145, 1.079, 0.076, 0.251}, {"05D3dh",
0.8, 24.203, 1.009, 0.078, 0.26}, {"03D1fq", 0.8, 24.512,
0.87, -0.045, 0.272}, {"05D3cx", 0.805, 23.913, 1.051, -0.11,
0.266}, {"05D3ha", 0.805, 24.388, 0.972, 0.09, 0.287}, {"05D4gw",
0.808, 24.481, 1.025, 0.047, 0.288}, {"05D4dy", 0.81, 24.617,
0.956, -0.083, 0.275}, {"04D3ny", 0.81, 24.262, 1.024, 0.011,
0.31}, {"04D4dm", 0.811, 24.402, 0.981, 0.021, 0.267}, {"04D3mk",
0.813, 24.294, 0.954, -0.104, 0.254}, {"04D3nc", 0.817, 24.293,

1.139, -0.022, 0.28}, {"06D2ce", 0.82, 24.215, 1.219, 0.018,
0.333}, {"04D3lu", 0.822, 24.377, 0.934, -0.084, 0.25}, {"05D1cl",
0.83, 24.353, 1.242, -0.018, 0.269}, {"04D3cp", 0.83, 24.111,
1.049, -0.18, 0.256}, {"04D2al", 0.836, 24.319, 0.933, -0.04,
0.372}, {"Elvis", 0.839, 24.397, 0.985, 0, 0.263}, {"05D4fg",
0.839, 24.195, 1.024, -0.102, 0.254}, {"06D2ga", 0.84, 24.29,
1.176, -0.001, 0.356}, {"05D1az", 0.842, 24.254, 1.184, 0.015,
0.269}, {"05D4hn", 0.842, 24.196, 1.122, 0.048, 0.319}, {"04D1hy",
0.85, 24.307, 1.11, -0.026, 0.254}, {"06D4ce", 0.85, 24.205,
1.168, -0.059, 0.303}, {"05D3kp", 0.85, 24.139, 1.131, -0.082,

0.243}, {"05D4dw", 0.855, 24.438, 1.046, 0.008, 0.278}, {"04D1ff",
0.86, 24.243, 1.08, 0.046, 0.257}, {"05D1iz", 0.86, 24.392,
1.095, -0.082, 0.336}, {"05D1er", 0.86, 24.618, 1.042, 0.062,
0.29}, {"03D1bk", 0.865, 24.345, 1.018, -0.167, 0.263}, {"05D1em",
0.866, 24.283, 1.017, -0.1, 0.26}, {"04D4ii", 0.866, 24.399,
1.165, 0.039, 0.284}, {"03D1ew", 0.868, 24.359, 1.036, -0.036,
0.284}, {"05D2nn", 0.87, 24.395, 0.879, -0.147, 0.321}, {"04D4bk",
0.88, 24.327, 1.181, -0.061, 0.28}, {"05D3cq", 0.89, 24.22,
0.96, -0.151, 0.278}, {"05D2by", 0.891, 24.568, 1.132, -0.008,
0.29}, {"03D4di", 0.899, 24.314, 1.146, -0.043, 0.29}, {"05D3ht",

0.901, 24.417, 1.118, -0.095, 0.282}, {"04D3gx", 0.91, 24.666,
0.94, -0.11, 0.293}, {"04D1ow", 0.915, 24.366, 1.004, -0.124,
0.268}, {"05D2bw", 0.92, 24.4, 0.972, -0.111, 0.319}, {"05D2ay",
0.92, 24.672, 0.983, 0.014, 0.349}, {"05D2ob", 0.924, 24.822,
1.103, 0.033, 0.318}, {"03D4cy", 0.927, 24.705, 1.103, -0.032,
0.346}, {"06D2cd", 0.93, 24.876, 1.166, 0.051, 0.49}, {"04D4jy",
0.93, 24.765, 1.022, -0.076, 0.345}, {"04D4ih", 0.934, 24.43,
1.03, -0.166, 0.276}, {"Vilas", 0.935, 24.473, 1.036, -0.028,
0.272}, {"04D4hf", 0.936, 24.811, 1.081, 0.028, 0.35}, {"05D3la",
0.936, 24.494, 0.967, -0.083, 0.267}, {"03D4cx", 0.949, 24.464,

0.947, 0.019, 0.331}, {"04D1pd", 0.95, 24.734, 1.039, 0.022,
0.298}, {"04D3ml", 0.95, 24.56, 1.117, -0.077, 0.29}, {"04D3nr",
0.96, 24.587, 0.99, 0.005, 0.299}, {"05D3km", 0.96, 24.773,
1.022, -0.123, 0.28}, {"04D4jw", 0.961, 24.848, 0.892, -0.173,
0.365}, {"Patuxent", 0.97, 25.026, 0.962, -0.129, 0.356}, {"Ombo",
0.975, 24.891, 1.208, 0.018, 0.271}, {"05D2my", 0.981, 24.688,
1.13, -0.026, 0.305}, {"04D3lp", 0.983, 25.023, 0.816, -0.044,
0.378}, {"04D1rx", 0.985, 24.77, 1.081, -0.062, 0.307}, {"04D1iv",
0.998, 24.624, 1.152, -0.074, 0.285}, {"06D4cl", 1, 24.578,
1.13, -0.065, 0.296}, {"04D3dd", 1.002, 25.234, 1.112, -0.016,

0.412}, {"Strolger", 1.01, 24.99, 1.195, -0.077, 0.433}, {"Eagle",
1.02, 24.968, 1.017, -0.061, 0.289}, {"Ferguson", 1.02, 24.867,
1.023, 0.007, 0.329}, {"04D4dw", 1.031, 24.546, 1.127, -0.08,
0.326}, {"06D3en", 1.06, 24.756, 0.858, -0.139, 0.358}, {"Gabi",
1.12, 25.121, 1.048, -0.037, 0.278}, {"Greenberg", 1.14, 24.727,
1.09, -0.055, 0.325}, {"Lancaster", 1.23, 26.054, 0.969, 0.073,
0.335}, {"Torngasek", 1.265, 25.757, 1.04, 0.028,
0.354}, {"Aphrodite", 1.3, 25.691, 1.058, 0.013, 0.284}, {"Borg",
1.34, 25.87, 1.192, 0.09, 0.389}, {"Sasquatch", 1.39, 25.956,
1.193, 0.112, 0.535}, {"Primo", 1.54992, 25.7576,

0.168369, -0.197134, 0.6329682}, {" GND13Sto ", 1.8, 26.1369,
0.527158, -0.0156538, 0.9455797}, {"SN UDS10Wil", 1.914,
26.2, -0.5, -0.071, 0.85}, {"GND12Col", 2.25, 26.791, 1.1517,
0.0421647, 1.381078}};

And here is the function that selects the minimum value:


FindMinimum[{chiSquared[t1, a0]}, {{t1, 1*^16}, {a0, 1}}]

This will return:


{111076., {t1 -> 6.65636*10^18, a0 -> 3.87928*10^-14}}


Which is pretty close, but if you remove the initializers, or set t1 to 1, then it's unable to find a minimum.


FindMinimum[{chiSquared[t1, a0]}, {t1, a0}]

{1.49713*10^7, {t1 -> 72.0749, a0 -> -2.21105*10^7}}

How do I get the FindMinimum function to work if I don't know the answer?



Answer



The root of the problem is the magnitude calculation which involves a Log10 operation, not the disparity between the power of the variables. The Log10 operation creates discontinuities in the solution space which the Mathematica solvers were not able to navigate.


The solution: instead of framing the problem in terms of the magnitude, I converted all the calculations and input values to kilometers. This made the solution space continuous and FindMinimum was able to find a solution that was reasonably close using very rough guesses for the initial conditions (t0 = 1*^14, a0 = 1). Then I used NMinimize and the original Log10 based calculations with a set of tight ranges around the result of the FindMinimum solution to find the absolute minimum in terms of magnitude and the magnitude errors.



Many thanks to Jack LaVigne for the effort he put into the scaled parameters solution but I think the real issue is that Mathematica's FindMinimum doesn't handle imaginary numbers well. The package from Original Labs, as it turns out, has a similar problem when the formula involves a Log10 operation: it can't navigate around the discontinuities.


Update:


Here is the code for the version that calculates the minimums using a continuous solution space by working in km instead of distance moduli (a notation similar to magnitude):


c = 299792.; 
megaParsec = 3.08567758*^19;
alpha = 0.147;
beta = 3.13;
mag = -19.34;
chiSquared[t1_, a0_] := Sum[residual[i, t1, a0]^2/error[i]^2, {i, 1, Length[data]}]
error[i_] := observedDistance[i, data[[i,6]]]

luminousDistance[z_, t1_, a0_] := -((a0*t1^2*z + 2*c*((-t1)*(1 + z) + Sqrt[t1^2*(1 + z)]))/(2 + z))
residual[i_, t1_, a0_] := observedDistance[i, 0.] - luminousDistance[data[[i,2]], t1, a0]
observedDistance[i_, error_] := (magnitude = data[[i,3]] + alpha*(data[[i,4]] - 1) - beta*data[[i,5]] - mag + error; 10^((magnitude - 25)/5)*megaParsec)
FindMinimum[{chiSquared[t1, a0]}, {{t1, 1*^16}, {a0, 1}}]

This will put you in the neighborhood using very rough guesses. The output is:


{3.00375, {t1 -> 6.76415*10^18, a0 -> 3.82816*10^-14}}

Which is close (like all the solutions that attempt to change the scale), but not the minimum. The chi-square on this solution is 0.74. Now that we're in the neighborhood, I can switch back to the Log10 version (the errors from Astronomy papers are always quoted in distance moduli, so it's the only valid test for Chi-Square). Here's the version using distance moduli:


c = 299792.; 

megaParsec = 3.08567758*^19;
alpha = 0.147;
beta = 3.13;
mag = -19.34;
chiSquared[t1_, a0_] := Sum[residual[i, t1, a0]^2/data[[i,6]]^2, {i, 1, Length[data]}]
luminousDistance[z_, t1_, a0_] := (distance = -((a0*t1^2*z + 2*c*((-t1)*(1 + z) + Sqrt[t1^2*(1 + z)]))/(2 + z)); 5*Log10[distance/megaParsec] + 25)
residual[i_, t1_, a0_] := observedDistance[i] - luminousDistance[data[[i,2]], t1, a0]
observedDistance[i_] := data[[i,3]] + alpha*(data[[i,4]] - 1) - beta*data[[i,5]] - mag
NMinimize[{chiSquared[x, y],
1*^17 < x < 1*^19 && 1*^-15 < y < 1*^-13}, {x, y}]


This version truly finds the minimum. The output is:


{342.207, {x -> 6.64112*10^18, y -> 3.87624*10^-14}}

And produces a chi-square of 0.72. So the solution is to first convert the formula to give a continuous solution space. Then the FindMinimum algorithms can navigate into the neighborhood of the minimum. Once you have the neighborhood, you can use NMinimize to find the absolute minimum.


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....