Skip to main content

Building a sparse array from given lists


Given some lists


lstRow1 = {{"C1", "C2", "C3"}, {1, 2, 3}};
lstRow2 = {{"C2", "D1", "D2"}, {4, 5, 6}};
lstRow3 = {{"C1", "D2", "D3"}, {7, 8, 9}};
lstRow4 = {{}, {}};
lstRow5 = {{"D1", "D2", "E1"}, {10, 11, 12}};
lstRow6 = {{}, {}};

lstHead = {{"C1", "H1"}, {"C2", "H1"}, {"C3", "H1"}, {"D1",

"H2"}, {"D2", "H2"}, {"D3", "H2"}, {"E1", "H3"}};

how to build a sparse arrary like this:


lstSparse = {
{"H1", "0", "0", "H2", "0", "0", "H3"},
{"C1", "C2", "C3", "D1", "D2", "D3", "E1"}, {1, 2, 3, 0, 0, 0,
0}, {0, 4, 0, 5, 6, 0, 0}, {7, 0, 0, 0, 8, 9, 0}, {0, 0, 0, 0, 0,
0, 0}, {0, 0, 0, 10, 11, 0, 12}, {0, 0, 0, 0, 0, 0, 0}};

or ZEROs could be replaced by blank string, to be like this. $$\left( \begin{array}{ccccccc} \text{H1} & \text{0} & \text{0} & \text{H2} & \text{0} & \text{0} & \text{H3} \\ \text{C1} & \text{C2} & \text{C3} & \text{D1} & \text{D2} & \text{D3} & \text{E1} \\ 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 5 & 6 & 0 & 0 \\ 7 & 0 & 0 & 0 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 10 & 11 & 0 & 12 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right) \to \left( \begin{array}{ccccccc} \text{H1} & \text{} & \text{} & \text{H2} & \text{} & \text{} & \text{H3} \\ \text{C1} & \text{C2} & \text{C3} & \text{D1} & \text{D2} & \text{D3} & \text{E1} \\ 1 & 2 & 3 & \text{} & \text{} & \text{} & \text{} \\ \text{} & 4 & \text{} & 5 & 6 & \text{} & \text{} \\ 7 & \text{} & \text{} & \text{} & 8 & 9 & \text{} \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \text{} & \text{} & \text{} & 10 & 11 & \text{} & 12 \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \end{array} \right)$$




Answer



rows = {lstRow1, lstRow2, lstRow3, lstRow4, lstRow5, lstRow6};
ac = ArrayComponents[rows[[All, 1]]];
sa = SparseArray[Join @@ (Thread /@ Thread[MapIndexed[{#2[[1]], #} &, ac, {2}] ->
rows[[All, 2]]]), {Length@rows, Max@ac}];

sa // MatrixForm // TeXForm


$\left( \begin{array}{ccccccc} 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 5 & 6 & 0 & 0 \\ 7 & 0 & 0 & 0 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 10 & 11 & 0 & 12 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)$




Alternatively, use "" as the background element


sa2 = SparseArray[Join @@ (Thread /@ Thread[MapIndexed[{#2[[1]], #} &, ac, {2}] -> 
rows[[All, 2]]]), {Length@rows, Max@ac}, ""];
sa2 // MatrixForm // TeXForm


$\left( \begin{array}{ccccccc} 1 & 2 & 3 & \text{} & \text{} & \text{} & \text{} \\ \text{} & 4 & \text{} & 5 & 6 & \text{} & \text{} \\ 7 & \text{} & \text{} & \text{} & 8 & 9 & \text{} \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \text{} & \text{} & \text{} & 10 & 11 & \text{} & 12 \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \end{array} \right)$



headers = Join @@@ Transpose[PadRight /@ MapIndexed[{{"H" <> ToString[#2[[1]]]}, #} &, 

GatherBy[DeleteDuplicates[Join @@ rows[[All, 1]]], StringTake[#, 1] &]]]


{{0, "H1", 0, 0, "H2", 0, 0, "H3"}, {0, "C1", "C2", "C3", "D1", "D2", "D3", "E1"}}



Join[headers, sa] // TeXForm


$\left( \begin{array}{ccccccc} \text{H1} & 0 & 0 & \text{H2} & 0 & 0 & \text{H3} \\ \text{C1} & \text{C2} & \text{C3} & \text{D1} & \text{D2} & \text{D3} & \text{E1} \\ 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 5 & 6 & 0 & 0 \\ 7 & 0 & 0 & 0 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 10 & 11 & 0 & 12 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)$




Update: Obtaining header rows from lstHead:


headers2 = {SequenceReplace[#[[1]], {b : (a_String) ..} :> 
Sequence[a, ## & @@ ConstantArray[0, Length[{b}] - 1]]], #[[2]]} &@
Reverse[Transpose[lstHead]]


{{"H1", 0, 0, "H2", 0, 0, "H3"}, {"C1", "C2", "C3", "D1", "D2", "D3", "E1"}}



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...