Skip to main content

Building a sparse array from given lists


Given some lists


lstRow1 = {{"C1", "C2", "C3"}, {1, 2, 3}};
lstRow2 = {{"C2", "D1", "D2"}, {4, 5, 6}};
lstRow3 = {{"C1", "D2", "D3"}, {7, 8, 9}};
lstRow4 = {{}, {}};
lstRow5 = {{"D1", "D2", "E1"}, {10, 11, 12}};
lstRow6 = {{}, {}};

lstHead = {{"C1", "H1"}, {"C2", "H1"}, {"C3", "H1"}, {"D1",

"H2"}, {"D2", "H2"}, {"D3", "H2"}, {"E1", "H3"}};

how to build a sparse arrary like this:


lstSparse = {
{"H1", "0", "0", "H2", "0", "0", "H3"},
{"C1", "C2", "C3", "D1", "D2", "D3", "E1"}, {1, 2, 3, 0, 0, 0,
0}, {0, 4, 0, 5, 6, 0, 0}, {7, 0, 0, 0, 8, 9, 0}, {0, 0, 0, 0, 0,
0, 0}, {0, 0, 0, 10, 11, 0, 12}, {0, 0, 0, 0, 0, 0, 0}};

or ZEROs could be replaced by blank string, to be like this. $$\left( \begin{array}{ccccccc} \text{H1} & \text{0} & \text{0} & \text{H2} & \text{0} & \text{0} & \text{H3} \\ \text{C1} & \text{C2} & \text{C3} & \text{D1} & \text{D2} & \text{D3} & \text{E1} \\ 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 5 & 6 & 0 & 0 \\ 7 & 0 & 0 & 0 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 10 & 11 & 0 & 12 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right) \to \left( \begin{array}{ccccccc} \text{H1} & \text{} & \text{} & \text{H2} & \text{} & \text{} & \text{H3} \\ \text{C1} & \text{C2} & \text{C3} & \text{D1} & \text{D2} & \text{D3} & \text{E1} \\ 1 & 2 & 3 & \text{} & \text{} & \text{} & \text{} \\ \text{} & 4 & \text{} & 5 & 6 & \text{} & \text{} \\ 7 & \text{} & \text{} & \text{} & 8 & 9 & \text{} \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \text{} & \text{} & \text{} & 10 & 11 & \text{} & 12 \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \end{array} \right)$$




Answer



rows = {lstRow1, lstRow2, lstRow3, lstRow4, lstRow5, lstRow6};
ac = ArrayComponents[rows[[All, 1]]];
sa = SparseArray[Join @@ (Thread /@ Thread[MapIndexed[{#2[[1]], #} &, ac, {2}] ->
rows[[All, 2]]]), {Length@rows, Max@ac}];

sa // MatrixForm // TeXForm


$\left( \begin{array}{ccccccc} 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 5 & 6 & 0 & 0 \\ 7 & 0 & 0 & 0 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 10 & 11 & 0 & 12 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)$




Alternatively, use "" as the background element


sa2 = SparseArray[Join @@ (Thread /@ Thread[MapIndexed[{#2[[1]], #} &, ac, {2}] -> 
rows[[All, 2]]]), {Length@rows, Max@ac}, ""];
sa2 // MatrixForm // TeXForm


$\left( \begin{array}{ccccccc} 1 & 2 & 3 & \text{} & \text{} & \text{} & \text{} \\ \text{} & 4 & \text{} & 5 & 6 & \text{} & \text{} \\ 7 & \text{} & \text{} & \text{} & 8 & 9 & \text{} \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \text{} & \text{} & \text{} & 10 & 11 & \text{} & 12 \\ \text{} & \text{} & \text{} & \text{} & \text{} & \text{} & \text{} \\ \end{array} \right)$



headers = Join @@@ Transpose[PadRight /@ MapIndexed[{{"H" <> ToString[#2[[1]]]}, #} &, 

GatherBy[DeleteDuplicates[Join @@ rows[[All, 1]]], StringTake[#, 1] &]]]


{{0, "H1", 0, 0, "H2", 0, 0, "H3"}, {0, "C1", "C2", "C3", "D1", "D2", "D3", "E1"}}



Join[headers, sa] // TeXForm


$\left( \begin{array}{ccccccc} \text{H1} & 0 & 0 & \text{H2} & 0 & 0 & \text{H3} \\ \text{C1} & \text{C2} & \text{C3} & \text{D1} & \text{D2} & \text{D3} & \text{E1} \\ 1 & 2 & 3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 5 & 6 & 0 & 0 \\ 7 & 0 & 0 & 0 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 10 & 11 & 0 & 12 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \right)$




Update: Obtaining header rows from lstHead:


headers2 = {SequenceReplace[#[[1]], {b : (a_String) ..} :> 
Sequence[a, ## & @@ ConstantArray[0, Length[{b}] - 1]]], #[[2]]} &@
Reverse[Transpose[lstHead]]


{{"H1", 0, 0, "H2", 0, 0, "H3"}, {"C1", "C2", "C3", "D1", "D2", "D3", "E1"}}



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...