Skip to main content

programming - How to make a dynamic nested menu?


There is no dynamic controller that can represent a hierarchical menu structure: ActionMenu can only handle flat action lists. Thanks to Kuba, we know a lot about FrontEnd`AttachCell (also here), which seems to be exactly the tool for this. However, I have problems making it work correctly in my rudimentary approach:


ClearAll[subMenu];
subMenu[lbl_, top_: False, menu : {___RuleDelayed}] :=
DynamicModule[{parent},
EventHandler[If[TrueQ@top, Panel, Identity]@Grid[{{lbl, "\[FilledRightTriangle]"}}], {"MouseEntered" :> (MathLink`CallFrontEnd[FrontEnd`AttachCell[
parent,
ToBoxes@ExpressionCell[

Panel[Column[

DynamicModule[{over = False},
EventHandler[
Style[First@#,
Background ->
Dynamic@If[over, Hue[.66, .7, .9, .5]]], {
"MouseEntered" :> (over = True),
"MouseExited" :> (over = False;),

"MouseClicked" :> (NotebookDelete@
ParentCell@EvaluationBox[]; Last@#;)

}]] & /@ menu, Alignment -> Left],
FrameMargins -> 2],
StripOnInput -> True],
{Automatic, {Right, Top}},
{Left, Top},
"ClosingActions" -> If[TrueQ@top,
{"SelectionDeparture"(*,"MouseExited","MouseClicked",
"ParentChanged","EvaluatorQuit","OutsideMouseClick"*)},
{"ParentChanged"}]
]])}],

Initialization :> (parent = EvaluationBox[];)];
subMenu[lbl_, lvl_: False, menu_List] := subMenu[lbl, lvl,
If[MatchQ[#, _RuleDelayed | _Rule], #, # :> {}] & /@ menu];
subMenu[lbl_, lvl_: False, menu_] := subMenu[lbl, lvl, {menu}];

And my example structure is:


subMenu["Menu", Top, {
Style["choices", Gray],
subMenu["sub 1",
{"subsub 1.1" :> Print@11, "subsub 1.2" :> Print@12}],

"sub 2" :> Print@2,
subMenu["sub 3",
{"subsub 3.1" :> Print@31, "subsub 3.2" :> Print@32}]
}]

enter image description here


Somehow I couldn't get a grip on how the children should be destroyed. Also, highlighting is only working partime.



Answer



Here's beta version, basic functionality is delivered. I have to polish it but probably I won't have time for that this year. It has to be packed into self contained module and styling options have to be enabled.


I will update a nice description of an approach too, but meanwhile, if anything is not clear, feel free to ask.



ActionNestedMenu[
"Test menu" -> {
"lbl 11" :> Print[1],
"lbl 12" -> {
"lbl 21" :> Print[21],
"lbl 22" :> Print[22]
},
"lbl 13" :> Print[3],
"lbl 14" -> {
"lbl 41" :> Print[41],

"lbl 42" :> Print[42]
},
"lbl 15" -> {
"lbl 51" -> {
"lbl 511" :> Print[531],
"lbl 512" :> Print[532]
},
"lbl 52" :> Print[41],
"lbl 53" :> Print[42],
"lbl 54" -> {

"lbl 541" :> Print[531],
"lbl 542" :> Print[532]
}
}
}
]

enter image description here


Code


BeginPackage["MoreUI`"];


ActionNestedMenu;


Begin["`Private`"];

ActionNestedMenu[menuLabel_ -> spec_] := DynamicModule[{},

subMenuWrapper[
menuStates,

0,
{
subMenuGate[
menuStates,
<|
"label" -> menuLabel,
"subMenuAlignment" -> {Left, Bottom},
"subMenu" -> parseSpec[menuStates, spec, 1]
|>,
0

]
}
]
];


SetAttributes[parseSpec, HoldFirst];

parseSpec[menuStates_, spec_List, n_]:= subMenuWrapper[
menuStates,

n,
parseSpec[menuStates, #, n]& /@ spec
];

parseSpec[menuStates_, lbl_ -> subMenu_, n_]:= subMenuGate[
menuStates,
<|
"label" -> lbl,
"subMenu" -> parseSpec[menuStates, subMenu, n+1],
"subMenuAlignment" -> {Right, Top}

|>,
n
];

(************* action label wrapper **************)
parseSpec[menuStates_, RuleDelayed[lbl_ , action_], n_]:= EventHandler[
Button[lbl, action; (*optional*) dropSubMenu[menuStates, 1],
Appearance -> "Frameless",
FrameMargins -> 5,
ImageMargins -> 0,

Alignment -> Left,
ImageSize -> {{120, Full}, {Automatic, Full}},
Background -> Dynamic[If[CurrentValue@"MouseOver", GrayLevel@.8, None]]
]
,
{
"MouseEntered" :> (
dropSubMenu[menuStates, n + 1]
)
},

PassEventsDown -> True
];


SetAttributes[subMenuWrapper, HoldFirst];

subMenuWrapper[menuStates_, level_, content_]:= EventHandler[
Framed[
Column[content],
FrameStyle->None,

FrameMargins->0,
ImageMargins ->0,
ImageSize->{{120, Full}, {Automatic, Full}}
],
{
"MouseEntered" :> (
forgetAboutClosing @ menuStates[-1];

),
"MouseExited" :> (

menuStates[-1] = scheduleMenuClosing[menuStates, level];
)
}
,
PassEventsDown -> True
];

(************* gate item label wrapper **************)
SetAttributes[subMenuGate, HoldFirst];


subMenuGate[menuStates_, label_String, level_Integer]:= subMenuGate[
menuStates,
<|"label"->label|>,
level
];

subMenuGate[menuStates_, spec_Association, level_Integer]:= DynamicModule[{thisBox, sumbMenuBox},

EventHandler[
Framed[

Grid[{{ Pane[spec["label"], 100], ">"}}],
BaseStyle -> "Panel",
FrameStyle-> If[level == 0, 2, None],
FrameMargins->5,
ImageMargins ->0,
ImageSize->{{120, Full}, {Automatic, Full}},
Background -> Dynamic[If[CurrentValue@"MouseOver", GrayLevel@.8, None]]
]
,
{

"MouseEntered" :> (

dropSubMenu[menuStates, level + 1];
NotebookDelete @ sumbMenuBox;

menuStates[level + 1] = sumbMenuBox = attachTo[
thisBox, spec["subMenu"], Lookup[spec, "subMenuAlignment", {Right, Top}]];

)
},

PassEventsDown -> True

]
,
Initialization:>(
thisBox = EvaluationBox[]
)
];




attachTo[parentbox_, what_, alignment_] := MathLink`CallFrontEnd[
FrontEnd`AttachCell[
parentbox,
ToBoxes[ExpressionCell[
what,
StripOnInput -> True,
Background -> CurrentValue@"PanelBackground",
CellFrame -> 1,
CellFrameMargins -> 0

]
],
{Automatic, alignment},
{Left, Top},
"ClosingActions" -> { "ParentChanged", "EvaluatorQuit"}
]
];

SetAttributes[dropSubMenu, HoldFirst];


dropSubMenu[menuStates_, n_]:= (

If[
ValueQ @ menuStates[n]
,
NotebookDelete @ menuStates[n];
menuStates[n]=.;
]
);


SetAttributes[forgetAboutClosing, HoldFirst];
forgetAboutClosing[task_]:=(

RunScheduledTask[ Quiet @ RemoveScheduledTask @ task, {.1}]

);


SetAttributes[scheduleMenuClosing, HoldFirst];


scheduleMenuClosing[menuStates_, level_]:=RunScheduledTask[
If[

True
,

dropSubMenu[menuStates, 1];(*this is enough since ParentChanged is included*)
menuStates[-1]=.;

];

RemoveScheduledTask[$ScheduledTask];

,
{.5}
];

End[];
EndPackage[];

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.