Skip to main content

plotting - How to assign special colors to the output of DensityPlot?


I have created the following function for plotting


plotDynamical[iterMethod_, points_] := 
DensityPlot[
iterAlgorithm[iterMethod], {t, xxMin, xxMax}, {s, yyMin,yyMax},
PlotRange -> {1,4}, ColorFunction -> {Orange, Blue, Black, Green},
PlotPoints -> points]


The possible results of " iterAlgorithm[iterMethod] " are 1 , 2, 3 or 4. I would like to assigning colours to numbers like so: Orange to 1,Blue to 2,Black to 3 and Green to 4. How can I do this?


complete my Algorithm is:


F = Compile[{{t, _Real}, {s, _Real}}, {t^2 + s^2 - 4, -Exp[t] + s - 
1}];
dF = Compile[{{t, _Real}, {s, _Real}}, {{2 t, 2 s}, {-E^t, 1}}];
invdF = Compile[{{t, _Real}, {s, _Real}}, {{1/(
2 E^t s + 2 t), -((2 s)/(2 E^t s + 2 t))}, {E^t/(
2 E^t s + 2 t), (2 t)/(2 E^t s + 2 t)}}];


rootF[1] = {-1.59832066552612835, 1.202235854627582} ;
rootF[2] = {0, 2} ;


rootPosition =
Compile[{{t, _Real}, {s, _Real}},
Which[Norm[{t, s} - rootF[1]] < 10.0^(-10), 3,
Norm[{t, s} - rootF[2]] < 10.0^(-10), 2, True,
1], {{rootF[_, _], _Real, _Real}}];


iterPsM10 = Compile[{{t, _Real}, {s, _Real}},
Block[{v = F[t, s], w = dF[t, s], u = invdF[t, s], x, y, z, dFz, Q,
uu, vv, Fu, vu, invdFvu},
x = {t, s};
y = x - (1/2 ) u.v;
z = 1/3 (4 y - x);
dFz = dF @@ ({z[[1]], z[[2]]});
Q = Inverse[w - 3 dFz];
uu = y + Q.v;
Fu = F @@ ({uu[[1]], uu[[2]]});

vv = uu + 2 Q.Fu;
vu = 1/2 (vv + uu);
invdFvu = invdF @@ ({vu[[1]], vu[[2]]});
uu - invdFvu.Fu]];

iterAlgorithm[iterMethod_, lim_] :=
Block[{ct, r}, ct = 0; r = rootPosition[t, s];
While[(r == 1) && (ct < lim), ++ct; {t, s} = iterMethod[t, s];
r = rootPosition[t, s]];
If[Head[r] == Which, r = 0];(*"Which" unevaluated*)Return[r]];


limIterations = 1000;
xxMin = -5; xxMax = 5; yyMin = -5; yyMax = 5;

plotDynamical[iterMethod_, points_] :=
DensityPlot[iterAlgorithm[iterMethod, limIterations],
{t, xxMin, xxMax}, {s, yyMin, yyMax}, PlotRange -> {0, 3},
ColorFunction -> {Green, Black, Orange, Blue},
PlotPoints -> points,
Epilog -> {White, PointSize[.02], Point[rootF[1]], Point[rootF[2]]}];



plotDynamical[iterPsM10, 56]


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...