Skip to main content

manipulate - Tangent to a circle



I am trying to show vector of fixed length which is the tangent to a circle which rotates. Any suggestions on how to simplify this ? My question is not about using Manipulate etc but more is there an easier way to compute and draw the tangent ?


x[t_] := Cos[t];
y[t_] := Sin[t];
d[x_, y_] := If[y == 0, 0, -x/y];
tangent[1, 0] = Arrow[{{1, 0}, {1, 1}}];
tangent[-1, 0] = Arrow[{{-1, 0}, {-1, -1}}];
tangent[0, -1] = Arrow[{{0, -1}, {1, -1}}];
tangent[0, 1] = Arrow[{{0, 1}, {1, 1}}];
tangent[x_, y_] =
If[y > 0,

Arrow[{{x, y}, {x - Cos[ArcTan[d[x, y]]],
y - Sin[ArcTan[ d[x, y]]]}}],
Arrow[{{x, y}, {x + Cos[ArcTan[d[x, y]]],
y + Sin[ArcTan[ d[x, y]]]}}]];
Manipulate[
p = ParametricPlot[{x[t], y[t]}, {t, 0, 2 π},
PlotRange -> {-2, 2}];
g = Graphics[{{Blue, Line[{{0, 0}, {x[a], y[a]}}]}, {Red,
tangent[x[a], y[a]]}}];
Show[{p, g}],

{a, 0, 2 π}]

Moving tangent


I extended my example above to include a 3D solution using suggested solutions -


Module[{x,y,z,tangent},
x[t_]:=Cos[t];
y[t_]:=Sin[t];
z[t_]:=0;
r ={{-2,2},{-2,2},{-2,2}};
p=ParametricPlot3D[{x[t],y[t],z[t]},{t,0,2Ï€},PlotRange->r,BoxRatios->1];

tangent[x_,y_,z_]:={Red,Arrow[{{x,y,z},{x-y,x+y,z}}]};
Manipulate[
g :=Graphics3D[{Sphere[{x[t],y[t],z[t]},0.2],
{Green,Arrow[{{x[t],y[t],z[t]},{x[t],y[t],1}}]},
{Blue,Arrow[{{0,0,0},{x[t],y[t],z[t]}}]},
tangent[x[t],y[t],0]
},PlotRange->r,BoxRatios->1];
Show[p,g],
{t,0,4Ï€}
]

]

3D




Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...