Skip to main content

boxes - Customizing display of partial differential equations


I am manipulating partial differential equations symbolically, and would like to get the easily readable form $\rho \frac{\partial v}{\partial t}$, leaving variables implicit.


Based on suggestions from How to make traditional output for derivatives I started out with


Derivative /: 
MakeBoxes[Derivative[α__][f1_][vars__Symbol], TraditionalForm] :=
Module[{bb, dd, sp},
MakeBoxes[dd, _] ^=

If[Length[{α}] == 1, "\[DifferentialD]", "∂"];
MakeBoxes[sp, _] ^= "\[ThinSpace]";
bb /: MakeBoxes[bb[x__], _] := RowBox[Map[ToBoxes[#] &, {x}]];
TemplateBox[{ToBoxes[bb[dd^Plus[α], f1]],
ToBoxes[Apply[bb,
Riffle[Map[bb[dd, #] &,
Select[({vars}^{α}), (# =!= 1 &)]], sp]]],
ToBoxes[Derivative[α][f1][vars]]}, "ShortFraction",
DisplayFunction :> (FractionBox[#1, #2] &),
InterpretationFunction :> (#3 &),

Tooltip -> Automatic]]

When functions appear outside of partial derivatives, they still appear as $v(t,x)$. Trying to fix this, I tried


supressVariable[f_Symbol] := 
f /: MakeBoxes[f[t, x], TraditionalForm] :=
InterpretationBox[ToBoxes[f], f[t, x]]
SetAttributes[supressVariable, Listable]
supressVariable[{v, ρ, p, f}];

This works fine for both



f[t, x] v[t, x] == 0 // TraditionalForm

and


ρ[t, x]*Derivative[0, 1][v][t, x] + 
v[t, x]*Derivative[0, 1][ρ][t, x] +
Derivative[1, 0][ρ][t, x] == 0 // TraditionalForm

producing nicely readable equations. However, the simple


f[t, x] == 0 // TraditionalForm


gives error message



An unknown box name (ToBoxes) was sent as the BoxForm for the expression. Check the format rules for the expression



and I don't know what to do with this. Can anybody help me out?



Answer



It seems to me that using MakeBoxes in this case is overkill. How about this simpler definition?


supressVariable[f_Symbol] := 
Format[f[t, x], TraditionalForm] := Interpretation[f, f[t, x]]


SetAttributes[supressVariable, Listable]
supressVariable[{v, ρ, p, f}];

This doesn't encounter the issue you faced, because the symbol f is passed directly to Interpretation (no need to wrap it in ToBoxes at all).


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...