Skip to main content

calculus and analysis - How to deal with complicated Gaussian integrals in Mathematica?


As we know, for most Gaussian integrals, we can get the analytical result. Now I have many Gaussian integrals to treat, which have the following general form,


Integrate[
x1^n1 x2^n2 x3^n3 ... xd^
nd Exp[-{x1, x2, x3 ... xd}.matrix.{x1, x2, x3 ... xd} + c1 x1 +
c2 x2 ... cd xd], {x1, -Infinity, Infinity},
{x2, -Infinity, Infinity} ... {xd, -Infinity, Infinity}].

The matrix is a symmetrical positive definite matrix.


We can get the analytical integral result for this general form. However, it is a difficult task for Mathematica to deal with the similiar expressions, which takes so much time. I have written a package for treating this problem.



But, it is still not sufficient because I need to deal with lots of these kinds of integral expressions. So the computation time is important.


So have you ever seen the package for doing this kind of Gaussian integral? Or can you give me some suggestions about this problem? Thank you very much!


Thanks all of you. For the concept MultinormalDistribution, it is very helpful for me.


By the way, How can I transform the following integral expression to the standard form of MultinormalDistribution in a simple way?


vec1 := {r1x, r1y, r1z};
vec2 := {r2x, r2y, r2z};
vect := {r1x, r1y, r1z, r2x, r2y, r2z};
vcof := {c1, c2, c3, c4, c5, c6};
Integrate[Exp[-vect.mat.vect + vcof.vect] (vec1.vec2)^n (vec1.vec1)^
l (vec2.vec2)^m, {r1x, -Infinity, Infinity}, {r1y, -Infinity,

Infinity}, {r1z, -Infinity, Infinity}, {r2x, -Infinity,
Infinity}, {r2y, -Infinity, Infinity}, {r2z, -Infinity, Infinity}];

The mat is a symmetrical positive definite sparse matrix. And n, l, m are integers.
Thanks!




Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...