Skip to main content

function construction - Picking random items out of a list only once


I'm trying to create a function that randomly returns a value from a list but remembers the values that have been given before. At the end when the list is empty it should return an empty list. Basically like emptying a bucket full of eggs one at a time.


Suppose I have two lists:


data1 = Range[10];
data2 = Range[20];


Assume a function


getRandomItem[l_List]

I tried playing with down-values but that doesn't work.


Calling getRandomItem[data1] two times would give (e.g) {1} and {3}. Calling getRandomItem[data2] two times would give (e.g) {15} and {20}


At the end as stated before when all items are chosen both getRandomItem[data1] and getRandomItem[data2] should return {}.


I would like to do that without declaring data1 and data2 as global variables nor do I which to change/alter them. So, basically I presume the function itself should remember which data has been given to it and where it had left the previous time.



Answer



How about making a closure? A closure is a function with an internal state.


makeDrippingBucket[list_] := 

Module[{bucket = list},
If[bucket === {}, {},
With[{item = RandomChoice[bucket]},
bucket = DeleteCases[bucket, item]; {item}]] &]

Then use this to make a "bucket", like this:


bucket = makeDrippingBucket[{1,2,3,4,5}]

This object has an internal state that changes every time you call it. Every time you call bucket[], it will give you a new number, until it gets empty.


bucket[]


(* ==> {3} *)



EDIT


The same thing, using @Eli's solution of pre-randomizing the list:


makeDrippingBucket[list_] := 
Module[{bucket = RandomSample[list]},
If[bucket === {}, {},
With[{item = Last[bucket]}, bucket = Most[bucket]; {item}]] &]

Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....