Skip to main content

custom notation - Going full functional (Haskell style)


I'm trying to define some notation so that Mathematica code would be more functional, similar to Haskell (just for fun): currying, lambdas, infix operator to function conversion, etc.. And I have some questions about it:



  • Is it possible to make all Mathematica h_[x1_,x2_,...] functions to work as h[x1][x2][..]?

  • Can I distinguish inside Notation box between <+1> and <1+>, how do I check for + there?

  • How to define right-associate apply operator with highest precedence ($)?


This is what I have so far:


<< Notation`;


lapply[x_, y_] := x[y]
rapply[x_, y_] := x[y]
InfixNotation[ParsedBoxWrapper["\\"], lapply]
InfixNotation[ParsedBoxWrapper["$"], rapply]
x_ \ y_ \ z_ := x[y][z]
x_ $ y_ $ z_ := x[y[z]]

Notation[ParsedBoxWrapper[
RowBox[{
RowBox[{"λ", " ", "x__"}], "->",

"y_"}]] ⟺ ParsedBoxWrapper[
RowBox[{"Function", "[",
RowBox[{
RowBox[{"{", "x__", "}"}], ",", "y_"}], "]"}]]]

Notation[ParsedBoxWrapper[
RowBox[{"〈",
RowBox[{"op_", " ", "x_"}],
"〉"}]] ⟺
ParsedBoxWrapper[

RowBox[{
RowBox[{"#", "op_", " ", "x_"}], "&"}]]]
AddInputAlias["f" -> ParsedBoxWrapper[
RowBox[{"〈",
RowBox[{"\[Placeholder]", "\[Placeholder]"}],
"〉"}]]]

Notation[ParsedBoxWrapper[
RowBox[{"{",
RowBox[{

RowBox[{"x_", " ", ".."}], " ", "y_"}],
"}"}]] ⟺ ParsedBoxWrapper[
RowBox[{"Range", "[",
RowBox[{"x_", ",", "y_"}], "]"}]]]

filter[f_][x_List] := Select[x, f]
map[f_][x__List] := Map[f, x]

filter\PrimeQ $ map\〈-1〉 $ map\ \
(λ x -> 2^x)\ {1 .. 100}


EDIT: Also did some kinda lazy lists, soon it will be haskell inside Mathematica :)


SetAttributes[list, HoldAll]
list[h_, l_][x_] := list[h, l[x]]
list[x_] := list[x, list]

map[f_][list] := list
map[f_][list[x_, xs_]] := list[f[x], map[f][xs]]

take[0][_] := list

take[_][list] := list
take[n_Integer][list[x_, xs_]] := list[x, take[n - 1][xs]]

range[n_Integer] := range[1, n]
range[m_, n_] := list[m, range[m + 1, n]]
range[n_, n_] := list[n, list]

show[list] := "[]"
show[list[x_, l_]] := ToString[x] <> "," <> show[l]


show $ (take[10] $ map\ (λ x -> x^2) $ range[10000])

Answer



That's how I finally defined haskell operators:


rapply[x_] := x
rapply[x_, y__] := x[rapply[y]]
InfixNotation[ParsedBoxWrapper["|"], rapply]

lapply[x_] := x
lapply[x__, y_] := lapply[x][y]
InfixNotation[ParsedBoxWrapper["∘"], lapply]


InfixNotation[ParsedBoxWrapper["·"], Composition]

Now $\circ$, $\dot{}{}$ and | act exactly like haskell's space, . and $ respectfully. Also if we have only single left application then @ is still helpful and it can be hidden with escape characters :@:.


And beautiful code like $\bf{show\cdot take\ 10\cdot map\ (\lambda\ x\to x{}^{\wedge}2)\cdot range | \infty }$ is possible. There are invisible @'s between take and 10, map and ($\lambda\ x\to x{}^{\wedge}2)$. In haskell the same would look like $\bf{show . take\ 10.map(\backslash x->x{}^{\wedge}2)$[1..]}$.


With double left application, $\circ$ is necessary: $\bf{map\circ(\lambda\ x\to x+1)\circ \{1,2,3\}}$


UPDATE: I made this TextCell hack to make partial infix operators:


infix[f_String] := Block[{x,y},Head[ToExpression["x" <> f <> "y"]]]

〈TextCell[s_][x_]〉 := infix[s][#, x] &

〈x_[TextCell[s_]]〉 := infix[s][x, #] &

We again can use invisible @ for application. Aliases can be made with TextCell on the left and on the right within AngleBrackets to enter them conveniently. Now stuff like <~Mod~10>, <2^>, <^3> also works.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...