Skip to main content

simplifying expressions - How to simplify exponents of the form $expleft(ifrac{2pi}{N}(N+1)right)$ inside a function


I'm really annoyed with Mathematica and I need your help. I defined a discrete Fourier-Transformation(I use II instead of N, because Mathematica wont let me-.-):


Subscript[Ï•, i_] = Sum[Exp[I (2 Pi)/II i k] f[k], {k, II}];

And I want to check that



Subscript[Ï•, 1] == Subscript[Ï•, II + 1]

This gives me $$\sum _k^{\text{II}} \left(f(k) e^{\frac{2 i \pi k}{\text{II}}}\right)=\sum _k^{\text{II}} \left(f(k) e^{\frac{2 i \pi (\text{II}+1) k}{\text{II}}}\right)$$


And by simply splitting the exponents on the right side of the equations this can be seen to be true.($\exp(i2\pi k)=1\forall k\in\mathbb N$ ) I really would have thought that Mathematica would be able to simplify that on its own, considering that $k$ is the summation index and is therefore an integer, but it does not. So I told Mathematica:


Simplify[Subscript[Ï•, 1] == Subscript[Ï•, II + 1],     Assumptions -> k ∈ Integers]

Didn't help, so I tried:


Simplify[Subscript[Ï•, 1] == Subscript[Ï•, II + 1] /. 
Exp[a_] :> Exp[Expand[a]], Assumptions -> k ∈ Integers]


Still does not work! Please help me. Thank you



Answer



Apparently, simplifying a Sum does not result in simplifying each term in the Sum. Try


Subscript[Ï•, 1] == Subscript[Ï•, II + 1] /. 
Exp[a_] :> Simplify[Exp[a], Assumptions -> k ∈ Integers]
(* True *)

Undoubtedly, there are more elegant approaches.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...