Skip to main content

parallelization - Changing a Part of a variable within ParallelDo


I want to evaluate nested do as a parallel computations. My formula looks like:



Do[
Do[
CC[[i, j]] += Kepf[[i, j]],{j, 1, Dimensions[Kepf][[2]]}
],{i, 1, Dimensions[Kepf][[1]]}
]

When previously I created 0 matrix CC and some matrix Kepf. I just want to insert matrix Kepf into matrix CC. When the matrices are very large it takes some time. So I want use parallel computations to shorten time.


Let`s consider a numerical example:


I create matrix A:


A = Table[0, {4}, {4}]


{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}


and matrix B:


B = Table[2 i + j, {i, 1, 2}, {j, 1, 2}]
{{3, 4}, {5, 6}}

then I evaluate the code


Do[A[[j]][[i]] += B[[i]][[j]], {i, 1, 2}, {j, 1, 2}]
{{3, 5, 0, 0}, {4, 6, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}


I`ve got what I wanted, but when I try to do parallel computing using the code


SetSharedVariable[A, B]
ParallelDo[A[[j]][[i]] += B[[i]][[j]], {i, 1, 2}, {j, 1, 2}]

It says that:


(kernel 2) Part::wrsym: Symbol A is Protected.
(kernel 1) Part::wrsym: Symbol A is Protected.
(kernel 2) Part::wrsym: Symbol A is Protected.
(kernel 1) Part::wrsym: Symbol A is Protected.


Any idea?



Answer



With


a = Table[0, {4}, {4}]
b = Table[2 i + j, {i, 1, 2}, {j, 1, 2}]

using


SetSharedVariable[a]
ParallelDo[a[[j, i]] += b[[i, j]], {i, 1, 2}, {j, 1, 2}]
a



{{3, 5, 0, 0}, {4, 6, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

would work, but using


a += Transpose[b] ~PadRight~ Dimensions@a


{{3, 5, 0, 0}, {4, 6, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}


is much nicer and faster.


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...