Skip to main content

piecewise - Solving a discontinuous differential-algebraic equation system for plasticity behaviour


I need to solve a discontinuous equation which is typical in theory of plasticity. For a simple case I get the following equation system (reformulated for numerical implementation):


$$\begin{align*} s(t) &= \frac{\sigma(t)}{C_1} + s_{ep}\\ s_{ep}'(t) &= \begin{cases}\frac{C_1}{C_1+C_2}s'(t) & \text{for } |\sigma(t)-C_2 s_{ep}(t)| \ge \sigma_{gr} \land \sigma(t)s'(t)>0\\0 & \text{otherwise}\end{cases} \end{align*}$$


with "zero" initial conditions. I'd like to get the solution for $s(t)$ for given parameters $C_1$, $C_2$, $\sigma_{gr}$ and a known function $\sigma(t)$. I assumed: $\sigma(t) = 40000\sin(0.02t)$, $C_1=80000$, $C_2 = 20000$, $\sigma_{gr} = 15000$. This should give a hysteresis loop on a plane $\sigma(t)-s(t)$.


So in Mathematica I tried to use automatic discontinuity handling by defining the second equation using a Piecewise function:



σ[t_] := 40000*Sin[0.02*t];
eq1 = s[t] == σ[t]/C1 + sep[t];
eq2 = sep'[t] == Piecewise[{{C1/(C1 + C2)*s'[t], (σ[t]*s'[t] > 0) && ((σ[t] - C2*sep[t] >= σgr) || (σ[t] - C2*sep[t]<=-σgr))}}, 0];
eqSys := {eq1, eq2, s[0] == 0, sep[0] == 0};
ndsolve=NDSolve[eqSys, {s[t], sep[t]}, {t, 0, 1000}]
disp[t_] := Evaluate[s[t] /. ndsolve];
sTab = Table[disp[t][[1]], {t, 0, 1000, 1}];
σTab = Table[σ[t], {t, 0, 1000, 1}];
ListPlot[Transpose[{sTab, σTab}], PlotRange -> All, GridLines -> Automatic]


Unfortunately I get:



NDSolve::tddisc: NDSolve cannot do a discontinuity replacement for event surfaces that depend only on time. >>



and the results are incomplete or the algorithm crashes. I also tried using WhenEvent with "DiscontinuitySignature" but with no success. This approach gives good results only for a linear monotonic function of $\sigma$, e.g. $\sigma(t) = 50t$.


I wrote a module to solve this using a simple first order Runge-Kutta so I obtained the solution but this is only a simple model. I'm sure Mathematica can solve this with its build-in methods. That would really save me a lot of work writing my own procedures.



Answer



Edit:
Using a helper function fh will result in no messages and no need to set extra options.


σ[t_] := 40000 Sin[0.02 t]

C1 = 80000;
C2 = 20000;
σgr = 15000;

fh[t_?NumericQ, x_, y_] := Piecewise[{{C1/(C1 + C2)*y,
(σ[t]*y > 0) && ((σ[t] - C2*x >= σgr) || (σ[t] - C2*x <= -σgr))}}, 0]

sol = NDSolve[{s[t] == σ[t]/C1 + sep[t], sep'[t] == fh[t, sep[t], s'[t]],
s[0] == 0, sep[0] == 0}, {s[t], sep[t]}, {t, 0, 1000}];


s[t_] = s[t] /. sol // First;
ParametricPlot[{s[t], σ[t]}, {t, 0, 10^3}, PlotRange -> All,
AspectRatio -> Full, GridLines -> Automatic]


plot



Comments

Popular posts from this blog

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...