I have two lists
start = {{1},{1},{1},{2},{3},{1}}
end = {{1},{2},{2},{3},{3},{1}}
And I want to create a Sankey diagram. Which looks something like
So, lines should join the start value to the corresponding end value.
I tried using Graph[]
but it didn't work very well - producing this oddly phallic shape.
start = Flatten[start]
end = Flatten[end]
f[x_, y_] := Module[{},
Return[{x <-> y}]]
result = Flatten[MapThread[f, {start, end}]]
Graph[result]
Answer
Here's the start of a SankeyDiagram
function:
Options[SankeyDiagram] = Join[
{ColorFunction -> {"Start" -> ColorData[97], "End" -> ColorData["GrayTones"]}},
Options[Graphics]
];
SankeyDiagram[rules_, opts:OptionsPattern[]]:=Module[
{
startcolors, svalues, slens, startsplit,
endcolors, evalues, elens, endsplit,
len, endpos, linecolors
},
len = Length[rules];
endpos = Ordering @ Ordering @ Sort[rules][[All, 2]];
startcolors = OptionValue[ColorFunction->"Start"];
endcolors = OptionValue[ColorFunction->"End"];
{svalues, slens} = Through @ {Map[First], Map[Length]} @ Split[Sort @ rules[[All, 1]]];
startsplit = Accumulate @ Prepend[-slens, len-.5];
linecolors = Flatten @ Table[
ConstantArray[startcolors[i], slens[[i]]],
{i, Length[slens]}
];
{evalues, elens} = Through @ {Map[First], Map[Length]} @ Split[Sort @ rules[[All, 2]]];
endsplit = Accumulate @ Prepend[-elens, len-.5];
Graphics[
{
Table[
{
startcolors[i],
Rectangle[Offset[{-40, 0}, {0, startsplit[[i]]}], Offset[{-10, 0}, {0, startsplit[[i+1]]}]]
},
{i, Length[startsplit]-1}
],
Table[
{
endcolors[(i-1)/(Length[endsplit]-1)],
Rectangle[Offset[{40, 0}, {1, endsplit[[i]]}], Offset[{10, 0}, {1, endsplit[[i+1]]}]]
},
{i, Length[endsplit]-1}
],
Table[
{
White,
Text[
svalues[[i]],
Offset[{-23, 0}, {0, (startsplit[[i]]+startsplit[[i+1]])/2}],
{0, 0},
{0, 1}
]
},
{i, Length[slens]}
],
Table[
{
LightGreen,
Text[
evalues[[i]],
Offset[{23, 0}, {1, (endsplit[[i]]+endsplit[[i+1]])/2}],
{0, 0},
{0, -1}
]
},
{i, Length[elens]}
],
Thickness[.03], Opacity[.7],
Table[
{linecolors[[i]], Line[connector[len-i, len-endpos[[i]]]]},
{i, len}
]
},
opts,
AspectRatio->1
]
]
connector[y1_, y2_] := Table[
{t, y1+(y2-y1) LogisticSigmoid[Rescale[t, {0,1}, {-10,10}]]},
{t, Subdivide[0, 1, 30]}
]
Here is a fair approximation of your desired diagram:
SankeyDiagram[{
1->1,1->2,1->3,1->4,1->5,
2->1,2->2,2->3,2->4,2->5,
3->1,3->2,3->3,3->4,3->5
}]
Comments
Post a Comment