Skip to main content

plotting - How to Make a Sankey Diagram


I have two lists


start = {{1},{1},{1},{2},{3},{1}} 

end = {{1},{2},{2},{3},{3},{1}}


And I want to create a Sankey diagram. Which looks something like


enter image description here


So, lines should join the start value to the corresponding end value.


I tried using Graph[] but it didn't work very well - producing this oddly phallic shape.


start = Flatten[start]
end = Flatten[end]

f[x_, y_] := Module[{},
Return[{x <-> y}]]


result = Flatten[MapThread[f, {start, end}]]

Graph[result]

enter image description here



Answer



Here's the start of a SankeyDiagram function:


Options[SankeyDiagram] = Join[
{ColorFunction -> {"Start" -> ColorData[97], "End" -> ColorData["GrayTones"]}},
Options[Graphics]

];

SankeyDiagram[rules_, opts:OptionsPattern[]]:=Module[
{
startcolors, svalues, slens, startsplit,
endcolors, evalues, elens, endsplit,
len, endpos, linecolors
},

len = Length[rules];

endpos = Ordering @ Ordering @ Sort[rules][[All, 2]];

startcolors = OptionValue[ColorFunction->"Start"];
endcolors = OptionValue[ColorFunction->"End"];

{svalues, slens} = Through @ {Map[First], Map[Length]} @ Split[Sort @ rules[[All, 1]]];
startsplit = Accumulate @ Prepend[-slens, len-.5];
linecolors = Flatten @ Table[
ConstantArray[startcolors[i], slens[[i]]],
{i, Length[slens]}

];

{evalues, elens} = Through @ {Map[First], Map[Length]} @ Split[Sort @ rules[[All, 2]]];
endsplit = Accumulate @ Prepend[-elens, len-.5];

Graphics[
{
Table[
{
startcolors[i],

Rectangle[Offset[{-40, 0}, {0, startsplit[[i]]}], Offset[{-10, 0}, {0, startsplit[[i+1]]}]]
},
{i, Length[startsplit]-1}
],
Table[
{
endcolors[(i-1)/(Length[endsplit]-1)],
Rectangle[Offset[{40, 0}, {1, endsplit[[i]]}], Offset[{10, 0}, {1, endsplit[[i+1]]}]]
},
{i, Length[endsplit]-1}

],
Table[
{
White,
Text[
svalues[[i]],
Offset[{-23, 0}, {0, (startsplit[[i]]+startsplit[[i+1]])/2}],
{0, 0},
{0, 1}
]

},
{i, Length[slens]}
],
Table[
{
LightGreen,
Text[
evalues[[i]],
Offset[{23, 0}, {1, (endsplit[[i]]+endsplit[[i+1]])/2}],
{0, 0},

{0, -1}
]
},
{i, Length[elens]}
],
Thickness[.03], Opacity[.7],
Table[
{linecolors[[i]], Line[connector[len-i, len-endpos[[i]]]]},
{i, len}
]

},
opts,
AspectRatio->1
]
]

connector[y1_, y2_] := Table[
{t, y1+(y2-y1) LogisticSigmoid[Rescale[t, {0,1}, {-10,10}]]},
{t, Subdivide[0, 1, 30]}
]


Here is a fair approximation of your desired diagram:


SankeyDiagram[{
1->1,1->2,1->3,1->4,1->5,
2->1,2->2,2->3,2->4,2->5,
3->1,3->2,3->3,3->4,3->5
}]

enter image description here


Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

plotting - Magnifying Glass on a Plot

Although there is a trick in TEX magnifying glass but I want to know is there any function to magnifying glass on a plot with Mathematica ? For example for a function as Sin[x] and at x=Pi/6 Below, this is just a picture desired from the cited site. the image got huge unfortunately I don't know how can I change the size of an image here! Answer Insetting a magnified part of the original Plot A) by adding a new Plot of the specified range xPos = Pi/6; range = 0.2; f = Sin; xyMinMax = {{xPos - range, xPos + range}, {f[xPos] - range*GoldenRatio^-1, f[xPos] + range*GoldenRatio^-1}}; Plot[f[x], {x, 0, 5}, Epilog -> {Transparent, EdgeForm[Thick], Rectangle[Sequence @@ Transpose[xyMinMax]], Inset[Plot[f[x], {x, xPos - range, xPos + range}, Frame -> True, Axes -> False, PlotRange -> xyMinMax, ImageSize -> 270], {4., 0.5}]}, ImageSize -> 700] B) by adding a new Plot within a Circle mf = RegionMember[Disk[{xPos, f[xPos]}, {range, range/GoldenRatio}]] Show...