Skip to main content

numerics - Fourier Collocation For Heat Equation



In fact My problem is this $$\frac{\partial u}{\partial t}+\ sin(y)\frac{\partial u}{\partial x}=\nu(\frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2})$$ But I wanted to test the method first to the heat equation and check if the L^2 norm of the solution behaves like this $$|u|_{L^2} =(\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} u^2 dx dy)^{1/2} \leq e^{-\nu t}$$ Given that $$\frac{\partial u}{\partial t}=\nu\Bigl(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\Bigr)$$ With the following periodic boundary conditions: $$u(-\pi,y,t)=u(\pi,y,t) \\ u(x,-\pi,t)=u(x,\pi,t) \\u_x(-\pi,y,t)=u_x(\pi,y,t)\\ u_y(x,-\pi,t)=u_y(x,\pi,t)\\ u(x,y,0)=\sin(x)$$



I have tried to solve this using fourier collocation method in mathematica And then using NDSolve to solve the system of ODe.


n = 11;
ν = 1;
T = 100;
u[x_, y_, t_] := \!\(
\*UnderoverscriptBox[\(∑\), \(k = 0\), \(n - 1\)]\(
\*UnderoverscriptBox[\(∑\), \(l = 0\), \(n - 1\)]\(a[k, l]\)[t]*
EXP[I*k*x]*EXP[I*l*y]\)\);
R[x_, y_, t] =
D[u[x, y, t], t] - ν*(D[u[x, y, t], x, x] + D[u[x, y, t], y, y]);

{S1} = Table[
R[(2 πk)/n, (2 πl)/n, mT/n] == 0, {k, 1, n - 2}, {l, 1,
n - 2}, {m, 1, n - 1}];
S2 = Table[
u[(2 πk)/n, -π, t] == u[(2 πk)/n, π, t], {k, 1,
n - 2}];

S3 = Table[
D[u[(2 πk)/n, -π, t], y] ==
D[u[(2 πk)/n, π, t], y], {k, 1, n - 1}];[] ( {

{\[Placeholder], \[Placeholder]}
} )
S4 = Table[
u[-π, (2 πl)/n, t] == u[π, (2 πl)/n, t], {l, 1,
n - 2}];

S5 = Table[
D[u[-π, (2 πl)/n, t], x] ==
D[u[π, (2 πl)/n, t], x], {l, 1, n - 1}];
S6 = Table[u[(2 πk)/n, y, 0] == Sin[(2 πk)/n], {k, 1, n - 2}];

Sys = Join[S1, S2, S3, S4, S5, S6];
Dimensions[Sys];

I have a problem plotting the solution using NDSovle . And How to plot the L^2 norm of the solution ?


Edited


n = 11;
ν = 1;
T = 100;
u[x_, y_, t_] := \!\(
\*UnderoverscriptBox[\(∑\), \(k = 0\), \(n - 1\)]\(

\*UnderoverscriptBox[\(∑\), \(l = 0\), \(n - 1\)]\(a[k, l]\)[t]*
Exp[I*k*x]*Exp[I*l*y]\)\);
R[x_, y_, t] =
D[u[x, y, t], t] +
Sin[y]*D[u[x, , y, t],
x] - ν*(D[u[x, y, t], x, x] + D[u[x, y, t], y, y]);
S1 = Table[
R[(2 πk)/n, (2 πl)/n, t] == 0, {k, 1, n - 2}, {l, 1,
n - 2}];
S2 = Table[

u[(2 πk)/n, -π, t] == u[(2 πk)/n, π, t], {k, 1,
n - 2}];

S3 = Table[
D[u[(2 πk)/n, -π, t], y] ==
D[u[(2 πk)/n, π, t], y], {k, 1, n - 1}];
S4 = Table[
u[-π, (2 πl)/n, t] == u[π, (2 πl)/n, t], {l, 1,
n - 2}];


S5 = Table[
D[u[-π, (2 πl)/n, t], x] ==
D[u[π, (2 πl)/n, t], x], {l, 1, n - 1}];
S6 = Table[u[(2 πk)/n, y, 0] == Sin[(2 πk)/n], {k, 1, n - 2}];
Sys = Join[S1, S2, S3, S4, S5, S6];
Dimensions[Sys]

Answer



First, we do not need periodic boundary conditions when implementing the Fourier method, since the functions used are periodic by definition. Secondly, we cannot use two sets of boundary conditions for the heat equation. Thus, the implementation of the Fourier method is such


n = 11;
\[Nu] = 1;

T = 100;
u[x_, y_, t_] := \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = \(-n\)\), \(n\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(l = \(-n\)\), \(n\)]\(a[k, l]\)[t]*
Exp[I*k*x]*Exp[I*l*y]\)\);
eq = Flatten[
Table[a[k, l]'[t] + \[Nu] a[k, l][t] (k^2 + l^2) == 0, {k, -n,
n}, {l, -n, n}]];
ic = Flatten[
Table[a[k, l][0] ==

1/(2 I) (KroneckerDelta[k, 1] -
KroneckerDelta[k, -1]) KroneckerDelta[l, 0], {k, -n,
n}, {l, -n, n}]];
var = Flatten[Table[a[k, l], {k, -n, n}, {l, -n, n}]];

sol = NDSolve[{eq, ic}, var, {t, 0, 100}];

The solution for t = 0, 5, 10 has the form of a sinusoid damping in amplitude


Table[Plot3D[
Evaluate[Re[u[x, y, t] /. sol]], {x, -Pi, Pi}, {y, -Pi, Pi},

Mesh -> None, ColorFunction -> "Rainbow"], {t, 0, 10, 5}]

Figure 1


The solution of the same problem obtained by the automatic method NDSolve


sol1 = NDSolveValue[{D[u1[x, y, t], 
t] - \[Nu] Laplacian[u1[x, y, t], {x, y}] == 0,
u1[-Pi, y, t] == u1[Pi, y, t], u1[x, -Pi, t] == u1[x, Pi, t],
u1[x, y, 0] == Sin[x]}, u1, {x, -Pi, Pi}, {y, -Pi, Pi}, {t, 0, 100}]

Table[Plot3D[sol1[x, y, t], {x, -Pi, Pi}, {y, -Pi, Pi}, Mesh -> None,

ColorFunction -> "Rainbow"], {t, 0, 10, 5}]

Figure 2


Compare two solutions at one point x=Pi/2, y=0. We see that the solutions diverge at t> 5. Increasing the number of modes to n=22 does not change this picture.


LogLogPlot[{Evaluate[Abs[u[Pi/2, 0, t] /. sol]], 
Abs[sol1[Pi/2, 0, t]]}, {t, 0, 100}, AxesLabel -> Automatic,
PlotLegends -> {"Fourier", "Automatic"}]

Figure 3


Consider the solution of the modified equation taking into account the term $\sin (y) u_x$. Fourier method



n = 22;
\[Nu] = 1;
T = 100;
u[x_, y_, t_] := \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(k = \(-n\)\), \(n\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(l = \(-n\)\), \(n\)]\(a[k, l]\)[t]*
Exp[I*k*x]*Exp[I*l*y]\)\);
Table[{a[k, n + 1][t_] := 0, a[k, -n - 1][t_] := 0}, {k, -n, n}];
eq = Flatten[
Table[a[k, l]'[t] +

k (a[k, l + 1][t] - a[k, l - 1][t])/2 + \[Nu] a[k, l][
t] (k^2 + l^2) == 0, {k, -n, n}, {l, -n, n}]];
ic = Flatten[
Table[a[k, l][0] ==
1/(2 I) (KroneckerDelta[k, 1] -
KroneckerDelta[k, -1]) KroneckerDelta[l, 0], {k, -n,
n}, {l, -n, n}]];
var = Flatten[Table[a[k, l], {k, -n, n}, {l, -n, n}]];

sol = NDSolve[{eq, ic}, var, {t, 0, 10}];


Table[Plot3D[
Evaluate[Re[u[x, y, t] /. sol]], {x, -Pi, Pi}, {y, -Pi, Pi},
Mesh -> None, ColorFunction -> "Rainbow"], {t, 0, 10, 5}]

Figure 4


The automatic method NDSolve


sol1 = NDSolveValue[{D[u1[x, y, t], t] + 
Sin[y] D[u1[x, y, t], x] - \[Nu] Laplacian[
u1[x, y, t], {x, y}] == 0, u1[-Pi, y, t] == u1[Pi, y, t],

u1[x, -Pi, t] == u1[x, Pi, t], u1[x, y, 0] == Sin[x]},
u1, {x, -Pi, Pi}, {y, -Pi, Pi}, {t, 0, 10}];

Table[Plot3D[sol1[x, y, t], {x, -Pi, Pi}, {y, -Pi, Pi}, Mesh -> None,
ColorFunction -> "Rainbow"], {t, 0, 3, 1}]

Figure 5


The solutions are quite different in appearance due to the uncertainty of periodic boundary conditions (solutions differ in phase). Although at a point x=Pi/2, y=0 the difference appears only when t>5 Figure 6


The calculation of the L2 norm and comparison with c Exp[-t]


f = Re[u[x, y, t] /. sol];

L2norm = Table[{t,
First[Sqrt[NIntegrate[f^2, {x, -Pi, Pi}, {y, -Pi, Pi}]]]}, {t, 0,
5, .2}];

c = Sqrt[NIntegrate[Sin[x]^2, {x, -Pi, Pi}, {y, -Pi, Pi}]];
Show[Plot[c Exp[-t], {t, 0, 5}, Frame -> True, PlotRange -> {-1, 4.5},
Axes -> False], ListPlot[L2norm, PlotStyle -> Red, Axes -> False]]

Figure 7


Comments

Popular posts from this blog

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1....

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...