Skip to main content

Export Plots to $LaTeX$


What is the quickest and best way to export a plot image from Mathematica to a $\LaTeX$ Editor? Is there something quicker than exporting it to an image and then including it in the $\LaTeX$ document?



Answer



I usually Export to hi-res PNG bitmaps for ease of use (there are a number of discussions on how best to export high-quality images on this forum. Take a peek at the right column of this page under "Related"). Personally I like notebooks that do not need any mouse-clicking or any other user interaction to produce output which makes reruns that much more comfortable and and most of all reproducible.


For ease of use when dealing with many different graphics I prepare a notebook for each of these and also generate the LaTeX code for insertion in my document. The graphics get their name from the notebook so you can easily spawn different versions by renaming the notebook.


plot = Plot[Sin[x], {x, 0, 10}]


Mathematica graphics


(*gfxname = StringTake[FileNameSplit[NotebookFileName[]][[-1]], {1, -4}]*)

EDIT: more concise and portable:


gfxname = FileBaseName[NotebookFileName[]]


"2012-05-04_Plot_Export"



Export[gfxname <> ".png", plot];


StringReplace["\\begin{figure}[!htb]\\centering
\\includegraphics[width=1\\textwidth]{XXX}
\\caption{Put your caption here.}
\\label{fig:XXX}
\\end{figure}
", "XXX" -> gfxname]

The resulting output can be copied as plaintext or you might even splice it directly into your document (although this is a bit much for casual use).


\begin{figure}[!htb]\centering

\includegraphics[width=1\textwidth]{2012-05-04_Plot_Export}
\caption{Put your caption here.}
\label{fig:2012-05-04_Plot_Export}
\end{figure}

Comments

Popular posts from this blog

plotting - Filling between two spheres in SphericalPlot3D

Manipulate[ SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, Mesh -> None, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], {n, 0, 1}] I cant' seem to be able to make a filling between two spheres. I've already tried the obvious Filling -> {1 -> {2}} but Mathematica doesn't seem to like that option. Is there any easy way around this or ... Answer There is no built-in filling in SphericalPlot3D . One option is to use ParametricPlot3D to draw the surfaces between the two shells: Manipulate[ Show[SphericalPlot3D[{1, 2 - n}, {θ, 0, Pi}, {ϕ, 0, 1.5 Pi}, PlotPoints -> 15, PlotRange -> {-2.2, 2.2}], ParametricPlot3D[{ r {Sin[t] Cos[1.5 Pi], Sin[t] Sin[1.5 Pi], Cos[t]}, r {Sin[t] Cos[0 Pi], Sin[t] Sin[0 Pi], Cos[t]}}, {r, 1, 2 - n}, {t, 0, Pi}, PlotStyle -> Yellow, Mesh -> {2, 15}]], {n, 0, 1}]

plotting - Plot 4D data with color as 4th dimension

I have a list of 4D data (x position, y position, amplitude, wavelength). I want to plot x, y, and amplitude on a 3D plot and have the color of the points correspond to the wavelength. I have seen many examples using functions to define color but my wavelength cannot be expressed by an analytic function. Is there a simple way to do this? Answer Here a another possible way to visualize 4D data: data = Flatten[Table[{x, y, x^2 + y^2, Sin[x - y]}, {x, -Pi, Pi,Pi/10}, {y,-Pi,Pi, Pi/10}], 1]; You can use the function Point along with VertexColors . Now the points are places using the first three elements and the color is determined by the fourth. In this case I used Hue, but you can use whatever you prefer. Graphics3D[ Point[data[[All, 1 ;; 3]], VertexColors -> Hue /@ data[[All, 4]]], Axes -> True, BoxRatios -> {1, 1, 1/GoldenRatio}]

plotting - Mathematica: 3D plot based on combined 2D graphs

I have several sigmoidal fits to 3 different datasets, with mean fit predictions plus the 95% confidence limits (not symmetrical around the mean) and the actual data. I would now like to show these different 2D plots projected in 3D as in but then using proper perspective. In the link here they give some solutions to combine the plots using isometric perspective, but I would like to use proper 3 point perspective. Any thoughts? Also any way to show the mean points per time point for each series plus or minus the standard error on the mean would be cool too, either using points+vertical bars, or using spheres plus tubes. Below are some test data and the fit function I am using. Note that I am working on a logit(proportion) scale and that the final vertical scale is Log10(percentage). (* some test data *) data = Table[Null, {i, 4}]; data[[1]] = {{1, -5.8}, {2, -5.4}, {3, -0.8}, {4, -0.2}, {5, 4.6}, {1, -6.4}, {2, -5.6}, {3, -0.7}, {4, 0.04}, {5, 1.0}, {1, -6.8}, {2, -4.7}, {3, -1.