Skip to main content

calculus and analysis - Multivariable Taylor expansion does not work as expected


The basic multivariable Taylor expansion formula around a point is as follows:



$$ f(\mathbf r + \mathbf a) = f(\mathbf r) + (\mathbf a \cdot \nabla )f(\mathbf r) + \frac{1}{2!}(\mathbf a \cdot \nabla)^2 f(\mathbf r) + \cdots \tag{1}$$


In Mathematica, as far as I know, there is only one function, Series that deals with Taylor expansion. And this function surprisingly doesn't expand functions in the way the above multivariable Taylor expansion formula does. What I mean is that the function Series doesn't produce a Taylor series truncated at the right order.


For example, if I want to expand $f(x,y)$ around $(0,0)$ to order $2$, I think I should evaluate the following Mathematica expression:


Normal[Series[f[x,y],{x,0,2},{y,0,2}]]

But the result also gives order $3$ and order $4$ terms. Of course, I can write the expression in the following way to get a series truncated at order $2$:


Normal[Series[f[x,y],{x,0,1},{y,0,1}]]

but in this way I lose terms like $x^2$ and $y^2$, so it is still not right.


The formula $(1)$ gives each order in each term, so if the function Series would expand a function in the way formula $(1)$ does, there will be no problem.



I am disappointed that the Mathematica developers designed Series as they did. Does anyone know how to work around this problem?



Answer



It's true that the multivariable version of Series can't be used for your purpose, but it's still pretty straightforward to get the desired order by introducing a dummy variable t as follows:


Normal[Series[f[(x - x0) t + x0, (y - y0) t + y0], {t, 0, 2}]] /. t -> 1


$(x-\text{x0}) (y-\text{y0}) f^{(1,1)}(\text{x0},\text{y0})+\frac{1}{2} (x-\text{x0})^2 f^{(2,0)}(\text{x0},\text{y0})+(x-\text{x0}) f^{(1,0)}(\text{x0},\text{y0})+(y-\text{y0}) f^{(0,1)}(\text{x0},\text{y0})+\frac{1}{2} (y-\text{y0})^2 f^{(0,2)}(\text{x0},\text{y0})+f(\text{x0},\text{y 0})$



The expansion is done only with respect to t which is then set to 1 at the end. This guarantees that you'll get exactly the terms up to the total order (2 in this example) that you specify.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...