Skip to main content

differential equations - Solving PDE involving Hilbert transform numerically


I'm trying to solve the following equation numerically:


$$u_{tt}-\mathcal{H}(u_x)=A^2_{xx},$$



where $\mathcal{H}$ is the Hilbert transform and $A$ is a prescribed forcing function which we assume takes the form $A(x,t)=f(x)\delta(t)$ for $\delta(t)$ the Dirac delta function. Note, the Hilbert transform is defined as


$$\mathcal{H}(u)(x)=\frac{1}{\pi}P.V. \int_{-\infty}^{\infty} \frac{u(x')}{x-x'}dx'.$$


Finally, I would like to invoke a causality condition, such that for $t<0$, $u=0$.


Currently, I am trying to implement, for example,


NDSolve[{-(D[Convolve[u[t, xp], xp^(-1), xp, x, PrincipalValue -> True], x]/Pi) + 
Derivative[2, 0][u][t, x] == -2*Sech[50*(-1 + t)]*Sech[x]^2*Tanh[x], u[0, x] == 0,
Derivative[1, 0][u][0, x] == 0, u[t, -10] == u[t, 10]}, u, {t, 0, 10}, {x, -10, 10}]

And Mathematica tells me


NDSolve::delpde: Delay partial differential equations are not currently supported by NDSolve.


Are there any work arounds for this? I am using Mathematica 7.



Answer



As I pointed out in a comment above, this problem can be solved by performing a Fourier Transform in x, solving the resulting ODE, and transforming back. The Fourier Transform of a Hilbert Transform is given by - I Sign[k] v[k], and the Fourier Transform of D[u[x],x] is I k v[k], where v is the Fourier Transform of u. Additionally, the Fourier Transform of the inhomogeneous term in the equation is


g = FourierTransform[Sech[x]^2*Tanh[x], x, k]
(* 1/2 I k^2 Sqrt[π/2] Csch[(k π)/2] *)

The resulting equation can be solved by


sol = FullSimplify[DSolveValue[{Derivative[2][v][t] + Abs[k] v[t] == 
-2*Sech[50*(-1 + t)] g, v[0] == 0, Derivative[1][v][0] == 0}, v[t], t]]

(* (E^(-50 - I t Sqrt[Abs[k]]) k^2 Sqrt[π/2] Csch[(k π)/2] (E^(2 I t Sqrt[ Abs[k]])
(50 + I Sqrt[Abs[k]]) Hypergeometric2F1[1, 1/2 - 1/100 I Sqrt[Abs[k]],
3/2 - 1/100 I Sqrt[Abs[k]], -(1/E^100)] - I E^(t (50 + I Sqrt[Abs[k]]))
(-50 I + Sqrt[Abs[k]]) Hypergeometric2F1[1, 1/2 - 1/100 I Sqrt[Abs[k]],
3/2 - 1/100 I Sqrt[Abs[k]], -E^(100 (-1 + t))] + I (50 I + Sqrt[Abs[k]])
(Hypergeometric2F1[1, 1/2 +1/100 I Sqrt[Abs[k]], 3/2 + 1/100 I Sqrt[Abs[k]], -(1/E^100)]
- E^(t (50 + I Sqrt[Abs[k]])) Hypergeometric2F1[1, 1/2 + 1/100 I Sqrt[Abs[k]],
3/2 + 1/100 I Sqrt[Abs[k]], -E^(100 (-1 + t))])))/(Sqrt[Abs[k]] (2500 + Abs[k])) *)

Not surprisingly, InverseFourierTransform cannot invert this expression. It can, of course, be inverted numerically. A typical plot of the expression is



Plot[Evaluate[ReIm[sol /. t -> 10]], {k, -6, 6}, PlotRange -> All]

enter image description here


The real part is essentially zero (because the source term in the ODE is so narrow in time), and the imaginary part is antisymmetric. Hence, a numerical sine transform can be used to invert expression. For instance,


Quiet@Table[NIntegrate[-2 Im[sol] Sin[k x]/Sqrt[2 Pi], {k, 0, 10}], {t, 2, 18, 8}, 
{x, 0, 20, .2}];
ListLinePlot[%, DataRange -> {0, 20}, PlotRange -> All, AxesLabel -> {x, u}]

enter image description here


u[x] spreads and increasingly oscillates as t increases.



Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...