Skip to main content

equation solving - How do I get all possible solutions in an underdetermined system?



I have two problems which I'd like to solve with Mathematica.


If I have a system of two equations with three unknowns, how can I get to list all possible solutions for the unknowns?


Here is what I have tried:


Solve[{ a + b + c == 5, 1/a + 1/b + 1/c == 1/5}, { a, b, c}]



Solve::svars: Equations may not give solutions for all "solve" variables. >> 

{{a -> 5, c -> -b}, {b -> 5, c -> -a}, {b -> -a, c -> 5}}

What would I change in this specific instance?


Here are the problems:


I


Suppose that $a, b, c$ are real numbers satisfying $a+b+c=5$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=+\frac{1}{5}$.

Find the greatest possible value of $a^3+b^3+c^3$


If I list all solutions I'll be able to choose all solutions maximizing $a^3+b^3+c^3$.


II


Finding integers $x, y$ and $z$ that satisfy this system:
$$\quad x^2 y + y^2 z + z^2 x = 2186 $$
$$\quad x y^2 + y z^2 + z x^2 = 2188$$.
evaluate $x^2+y^2+z^2$


The both problems can be found here (see exercises $27$ and $30$ ).



Answer



I



Let's write down an appropriate system we would like to solve,
i.e. we are to maximize a^3 + b^3 + c^3 knowing that a + b + c == 5 and 1/a + 1/b + 1/c == 1/5, thus the most direct approach uses Maximize with adequate conditions:


Maximize[{a^3 + b^3 + c^3, a + b + c == 5, 1/a + 1/b + 1/c == 1/5}, {a, b, c}]


{125, {a -> 1, b -> 5, c -> -1}}

With Maximize we can get only a specific solution, an example can be found here : How do I determine the maximum value for a polynomial, given a range of x values?, nevertheless we can remedy this problem using Lagrange multipliers, see e.g. How can I implement the method of Lagrange multipliers to find constrained extrema?.
However since there is a symmetry between a, b and c we can conclude that any permutation of this triple {a -> 1, b -> 5, c -> -1} is also a solution.


There are another ways to solve the problem which can be examined with the answers to these questions: Am I missing anything? Solving Equations

Efficient code for solve this equation


Let's provide the simplest:


Simplify[ a^3 + b^3 + c^3, {{a + b + c == 5, 1/a + 1/b + 1/c == 1/5}}]


125

II


Another question provides a nice example where a simple usage of Solve and Reduce with an appropriate domain specification will not be sufficient.


E.g. this yields a complicated system returning the solution but it doesn't clarify if another solutions really exist.



Reduce[ x^2 y + y^2 z + z^2 x == 2186 && x y^2 + y z^2 + z x^2 == 2188 && 
(x | y | z) ∈ Integers, {x, y, z}]

Thus we should approach the problem in a different way.
Let's notice that:


Simplify[ x y^2 + y z^2 + z x^2 - (x^2 y + y^2 z + z^2 x)]


-(x - y) (x - z) (y - z)


Now we can conclude that using slightly different system we can find an appropriate solution:


 x^2 + y^2 + z^2 /. Normal @ 
Solve[ x - y == a && x - z == b && y - z == c &&
x^2 y + y^2 z + z^2 x == 2186 && -a b c == 2, {x, y, z}, Integers]//Union//First


245    

Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...