Skip to main content

calculus and analysis - How to speed up the calculation of a multi-dimension matrix involving symbolic integral?


The following program succeeds in getting matrix CC, but it takes time badly, especially in the case varNumber becomes larger just as the following varNumber = 35. Who can speed up the process of calculation? Thanks!


ClearAll["Global`*"];
varNumber = 35; end = Infinity;
s1 = 112*^9; s2 = 25*^9; s3 = 15.1; s4 = 5.5*10^-9;


a[m_] := Exp[-x/2]*LaguerreL[m, x];
b[m_, i_, j_, l_] := Integrate[a[m]*x^i*D[a[l], {x, j}], {x, 0, end}];
d[m_, i_, j_, l_] :=
Integrate[
a[m]*x^i*D[
a[l], {x, j}]*(DiracDelta[x] -
DiracDelta[x - end]), {x, -Infinity, Infinity}];

c[1, 1][m_, l_] := s2*d[m, 0, 1, l] + s2*b[m, 0, 2, l];
c[1, 2][m_, l_] := 0;

c[1, 3][m_, l_] := 0;
c[2, 1][m_, l_] := 0;
c[2, 2][m_, l_] := s1*d[m, 0, 1, l] + s1*b[m, 0, 2, l];
c[2, 3][m_, l_] := s3*d[m, 0, 1, l] + s3*b[m, 0, 2, l];
c[3, 1][m_, l_] := 0;
c[3, 2][m_, l_] := s3*d[m, 0, 1, l] + s3*b[m, 0, 2, l];
c[3, 3][m_, l_] := -s4*d[m, 0, 1, l] - s4*b[m, 0, 2, l];

CC = ArrayFlatten@
Table[c[m, n][i, j], {m, 3}, {n, 3}, {i, 0, varNumber - 1}, {j, 0,

varNumber - 1}]; // AbsoluteTiming
{2283.69, Null}

Answer



Try this instead of your definitions of b and d:


b[m_, 0, 2, l_] /; l == m = 1/4;
b[m_, 0, 2, l_] /; l > m = l - m;
b[m_, 0, 2, l_] /; l < m = 0;
d[m_, 0, 1, l_] = -l - 1/2;

With these I can assemble CC in 0.047589 seconds (varNumber = 35).



For different values of $i$ and $j$, I find the fast definition


d[m_, i_, j_, l_] := If[i == 0, a[m]*D[a[l], {x, j}] /. x -> 0, 0];

following directly from the integral over Dirac $\delta$-functions. As for b[m,i,j,l] I would recommend asking at math.SE to see if anyone knows a closed formula for these integrals.


More generally, in the absence of such formulas you can use classical memoization, which gains you a big factor because you don't keep re-calculating the same values. Alternatively, you can use persistent memoization that will remember values forever, even when the kernel is restarted:


cacheloc = PersistenceLocation["Local", 
FileNameJoin[{$UserBaseDirectory, "caches", "bintegrals"}]];
end = Infinity;
a[m_] = Exp[-x/2]*LaguerreL[m, x];
b[m_Integer, i_Integer, j_Integer, l_Integer] := b[m, i, j, l] =

Once[Integrate[a[m]*x^i*D[a[l], {x, j}], {x, 0, end}], cacheloc];

Here I've used a combination of classical memoization and persistent storage, which complement each other: the former is very fast but impermanent, while the latter is a bit sluggish but permanent. Together, we get both advantages: the first lookup from permanent storage is still sluggish, but afterwards we get very fast lookup.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...