Skip to main content

plotting - Implement planar correction for skewed 3D profilometric data


I have some data that represents small-scale surface topography. The data is planar but not flat because it's impractical to level this microscope to a tolerance of microns. It looks like this:


An example of 3D profilometric data with a nonzero planar slope I'd like to postprocess that slope out, such that the major axis is colinear with the long side of the blue rectangle and the vertical axis can then be rescaled to show meaningful topographic variation instead of the (really large) planar slope.


One approach here might be to do an orthogonal transformation via (basically) principal component analysis, eg. find the three eigenvalue/eigenvector pairs, and then treat the eigenvectors corresponding to the largest two eigenvalues as the new X and Y axes. I'd be very interested to see how this (or some better way) might be done efficiently in Mathematica (this data is generally in the millions of rows).


An example of my data is here.


and this is the code I've written so far (which depends on version 9+ for Downsample[]):


    pathToDatafile = "path\\to\\file\\6000s.xyz";
data = Import[pathToDatafile,"Table","HeaderLines"->15];
data = DeleteCases[data,{__,_String,_String}]; (*remove the "no data" lines that the instrument creates*)
data=Delete[data,-1]; (*throw away the instrument's pound sign at the end of the file*)

data = Downsample[data,{100,1}];(*downsample by a lot because we have way too many datapoints*)
ListPlot3D[data,
Mesh->None,
BoxRatios->Automatic,
PlotStyle->LightBlue,
Boxed->False,
Axes->{True,True,True},
AxesLabel->{"\[Mu]m","","\[Mu]m"},
PlotRange->{Automatic,Automatic,{0,250}},
ImageSize->Large

]

Answer



This solution is giving some artifacts, I believe, due to the downsampling, but the problem can be solved by using RotationTransform similar to this


ListPlot3D[data]
ListPlot3D[RotationTransform[-2.2 Degree, {1, 0, 0}, data[[1]]]@data]

Mathematica graphics


Mathematica graphics


You can make an interactive leveler. This requires a severely downsampled dataset in order to work smoothly (at least on my computer)


subdata = Downsample[data, {100, 1}];

Manipulate[Module[{d},
d = RotationTransform[x Degree, {1, 0, 0}, subdata[[1]]]@subdata;
d = RotationTransform[y Degree, {0, 1, 0}, d[[1]]]@d;
ListPlot3D[d]
], {{x, 0}, -5, 5}, {{y, 0}, -5, 5}]

Mathematica graphics


And then use those results on the full set of data


Module[{d},
d = RotationTransform[-2.16 Degree, {1, 0, 0}, data[[1]]]@data;

d = RotationTransform[0.12 Degree, {0, 1, 0}, d[[1]]]@d;
ListPlot3D[d]
]

Which gets you a slightly tweaked version of the image I have above, so I won't repost it.


Comments

Popular posts from this blog

mathematical optimization - Minimizing using indices, error: Part::pkspec1: The expression cannot be used as a part specification

I want to use Minimize where the variables to minimize are indices pointing into an array. Here a MWE that hopefully shows what my problem is. vars = u@# & /@ Range[3]; cons = Flatten@ { Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; Minimize[{Total@((vec1[[#]] - vec2[[u[#]]])^2 & /@ Range[1, 3]), cons}, vars, Integers] The error I get: Part::pkspec1: The expression u[1] cannot be used as a part specification. >> Answer Ok, it seems that one can get around Mathematica trying to evaluate vec2[[u[1]]] too early by using the function Indexed[vec2,u[1]] . The working MWE would then look like the following: vars = u@# & /@ Range[3]; cons = Flatten@{ Table[(u[j] != #) & /@ vars[[j + 1 ;; -1]], {j, 1, 3 - 1}], 1 vec1 = {1, 2, 3}; vec2 = {1, 2, 3}; NMinimize[ {Total@((vec1[[#]] - Indexed[vec2, u[#]])^2 & /@ R...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...

What is and isn't a valid variable specification for Manipulate?

I have an expression whose terms have arguments (representing subscripts), like this: myExpr = A[0] + V[1,T] I would like to put it inside a Manipulate to see its value as I move around the parameters. (The goal is eventually to plot it wrt one of the variables inside.) However, Mathematica complains when I set V[1,T] as a manipulated variable: Manipulate[Evaluate[myExpr], {A[0], 0, 1}, {V[1, T], 0, 1}] (*Manipulate::vsform: Manipulate argument {V[1,T],0,1} does not have the correct form for a variable specification. >> *) As a workaround, if I get rid of the symbol T inside the argument, it works fine: Manipulate[ Evaluate[myExpr /. T -> 15], {A[0], 0, 1}, {V[1, 15], 0, 1}] Why this behavior? Can anyone point me to the documentation that says what counts as a valid variable? And is there a way to get Manpiulate to accept an expression with a symbolic argument as a variable? Investigations I've done so far: I tried using variableQ from this answer , but it says V[1...