Skip to main content

plotting - How can I plot this transcedental equation?


How can I plot $\kappa(\epsilon_{dd},\lambda)$ this transcendental equation? $$3\kappa^2 \epsilon_{dd}\left[\left(\frac{\lambda^2}{2}+1\right)\frac{f_s(\kappa)}{1-\kappa^2}-1\right]+(\epsilon_{dd}-1)(\kappa^2-\lambda^2)=0 $$ where $\lambda=1,2,3,4$ and $$f_s(\kappa)=\frac{1+2\kappa^2}{1-\kappa^2}-\frac{3\kappa^2 artanh \sqrt{1-\kappa^2} }{(1-\kappa^2)^{3/2}}. $$


My original problem is not that, but it's similar. If you help me with this, maybe I can solve mine.


Here are the codes of equations:


fs[kappa_] := (1 +2 kappa^2)/(1 - kappa^2) - (3 kappa^2 ArcTanh[
Sqrt[1 - kappa^2]])/(1 - kappa^2)^(3/2)

3 kappa^2 edd (((lambda^2/2) -1 ) fs[kappa]/(1 - kappa^2) -
1) + (edd - 1) (kappa^2 - lambda^2) == 0


Original plotting



Answer



Use ContourPlot.


fs[kappa_] := (1 + 2 kappa^2)/(1 - 
kappa^2) - (3 kappa^2 ArcTanh[Sqrt[1 - kappa^2]])/(1 -
kappa^2)^(3/2)

zero[kappa_, edd_, lambda_] =
3 kappa edd (((lambda^2/2) + 1) fs[kappa]/(1 - kappa^2) -
1) + (edd - 1) (kappa^2 - lambda^2);


Show[{ContourPlot[
Evaluate@
Table[zero[kappa, edd, lambda] == 0, {lambda, 0, 2, 1/3}], {edd,
0, 1.8}, {kappa, 0, 2}, FrameLabel -> Automatic,
AspectRatio -> 6/10],
ContourPlot[edd + 1, {edd, 0, 1.8}, {kappa, 0, 2},
FrameLabel -> Automatic, AspectRatio -> 6/10,
RegionFunction -> Function[{x, y, z}, 1 < x < 2],
ContourStyle -> {Directive[Lighter[Red, 0.8], Dashed]},

Contours -> 100, ContourShading -> None],
ContourPlot[edd + 1, {edd, 0, 1.8}, {kappa, 0, 2},
FrameLabel -> Automatic, AspectRatio -> 6/10,
RegionFunction -> Function[{x, y, z}, (x - 2)^2 + (y)^2 < 1],
ContourStyle -> {Directive[Lighter[Blue, 0.7], Dashed]},
Contours -> 100, ContourShading -> None]},
Epilog -> {Text[unstable, {1.4, 0.5}], Text[metastable, {1.4, 1.5}],
Text[stable, {0.6, 1.8}]}]

enter image description here



Comments

Popular posts from this blog

front end - keyboard shortcut to invoke Insert new matrix

I frequently need to type in some matrices, and the menu command Insert > Table/Matrix > New... allows matrices with lines drawn between columns and rows, which is very helpful. I would like to make a keyboard shortcut for it, but cannot find the relevant frontend token command (4209405) for it. Since the FullForm[] and InputForm[] of matrices with lines drawn between rows and columns is the same as those without lines, it's hard to do this via 3rd party system-wide text expanders (e.g. autohotkey or atext on mac). How does one assign a keyboard shortcut for the menu item Insert > Table/Matrix > New... , preferably using only mathematica? Thanks! Answer In the MenuSetup.tr (for linux located in the $InstallationDirectory/SystemFiles/FrontEnd/TextResources/X/ directory), I changed the line MenuItem["&New...", "CreateGridBoxDialog"] to read MenuItem["&New...", "CreateGridBoxDialog", MenuKey["m", Modifiers-...

How to thread a list

I have data in format data = {{a1, a2}, {b1, b2}, {c1, c2}, {d1, d2}} Tableform: I want to thread it to : tdata = {{{a1, b1}, {a2, b2}}, {{a1, c1}, {a2, c2}}, {{a1, d1}, {a2, d2}}} Tableform: And I would like to do better then pseudofunction[n_] := Transpose[{data2[[1]], data2[[n]]}]; SetAttributes[pseudofunction, Listable]; Range[2, 4] // pseudofunction Here is my benchmark data, where data3 is normal sample of real data. data3 = Drop[ExcelWorkBook[[Column1 ;; Column4]], None, 1]; data2 = {a #, b #, c #, d #} & /@ Range[1, 10^5]; data = RandomReal[{0, 1}, {10^6, 4}]; Here is my benchmark code kptnw[list_] := Transpose[{Table[First@#, {Length@# - 1}], Rest@#}, {3, 1, 2}] &@list kptnw2[list_] := Transpose[{ConstantArray[First@#, Length@# - 1], Rest@#}, {3, 1, 2}] &@list OleksandrR[list_] := Flatten[Outer[List, List@First[list], Rest[list], 1], {{2}, {1, 4}}] paradox2[list_] := Partition[Riffle[list[[1]], #], 2] & /@ Drop[list, 1] RM[list_] := FoldList[Transpose[{First@li...

functions - Get leading series expansion term?

Given a function f[x] , I would like to have a function leadingSeries that returns just the leading term in the series around x=0 . For example: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x)] x and leadingSeries[(1/x + 2 + (1 - 1/x^3)/4)/(4 + x)] -(1/(16 x^3)) Is there such a function in Mathematica? Or maybe one can implement it efficiently? EDIT I finally went with the following implementation, based on Carl Woll 's answer: lds[ex_,x_]:=( (ex/.x->(x+O[x]^2))/.SeriesData[U_,Z_,L_List,Mi_,Ma_,De_]:>SeriesData[U,Z,{L[[1]]},Mi,Mi+1,De]//Quiet//Normal) The advantage is, that this one also properly works with functions whose leading term is a constant: lds[Exp[x],x] 1 Answer Update 1 Updated to eliminate SeriesData and to not return additional terms Perhaps you could use: leadingSeries[expr_, x_] := Normal[expr /. x->(x+O[x]^2) /. a_List :> Take[a, 1]] Then for your examples: leadingSeries[(1/x + 2)/(4 + 1/x^2 + x), x] leadingSeries[Exp[x], x] leadingSeries[(1/x + 2 + (1 - 1/x...